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Big Data and Bayesian Learning?

! Large scale datasets are fast becoming the norm.

! Analysing and extracting understanding from these data is a driver of 
progress in many sectors of society.

! Current successes in scalable machine learning are optimization-based and 
non-Bayesian.

! What is the role of Bayesian learning in world of Big Data?
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Product Recommendation Systems

! Data: Collection of pairs {(i,j)} and Yij:                                                      
how much customer i likes product j.

! Learn about the likes and dislikes of each customer.

! Model each user and product as vectors.

       Yij       i

j

Yij |Xui, Xpj � X>
uiXpj +N (0, �)

Year Name #Ratings #Users #items
1999 MovieLens .1M 943 1682
2004 EachMovie 2.8M 72916 1682
2006 Netflix 100M 480189 17770
2011 Yahoo Music 263M 1000990 624961
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Topic Modelling

! Data: Collection of “documents”, each document consisting of a number of 
“words”.

! Learn about groups of co-occurring words, or “topics”.
! Model each document as a mixture of topics.

! Latent Dirichlet allocation [Blei et al 2003].
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Topic Modelling
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Bayesian Learning: Simple Setup 

! Parameter vector X.

! Data items Y = y1, y2,... yN.

! Model:

! Aim:

X

y1 y2 y3 y4 ..... yN

p(x|y) = p(x)p(y|x)
p(y)

p(x, y) = p(x)
NY

i=1

p(yi|x) = p(x)
NY

i=1

`i(x)
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Important Issues Beyond This Talk and Setup

! Data:
! Heterogeneity and complexity
! Big collection of small data
! High dimensional data
! Causality

! Methodology:
! Modelling flexibility, generality and ease of use
!Algorithm flexibility, generality and ease of use
!Software flexibility, generality and ease of use
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Why Bayesian Machine Learning?

! An important framework to frame learning.

! Flexible and intuitive construction of complex models. 

! Quantification of uncertainty.

! Mitigation of overfitting.

! Straightforward derivation of learning algorithms.
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Generic (Bayesian) Learning on Big Data

! Stochastic optimisation using mini-batches.
! Stochastic gradient optimisation.

Stochastic variational inference [Hoffman et al 2013]
Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, 
Teh et al 2016, Vollmer et al (forthcoming)]

! Distributed/parallel computations on cores/clusters/GPUs.
! MapReduce, parameter server.

Embarassingly Parallel MCMC [
Sampling via Moment Sharing [Xu et al 2014]
Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Generic (Bayesian) Learning on Big Data

! Stochastic optimisation using mini-batches.
! Stochastic gradient optimisation.
! Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]
! Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, Teh 

et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler & 
Shang 2015…]

! Distributed/parallel computations on cores/clusters/GPUs.
! MapReduce, parameter server.
! Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013, 

Wang & Dunson 2013, Stanislav et al 2014]
! Sampling via Moment Sharing [Xu et al 2014]
! Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Exponential Families

! Sufficient statistics s, natural parameters θ, log partition function A(θ).

! Equivalent parameterisation as mean parameters μ:

! A(θ) is convex with convex domain Θ.  
! Convex conjugate is the negative entropy A*(μ) with convex domain      :

! Derivatives of A and A* convert between natural and mean parameters:

! See [Wainwright & Jordan 2008].

p✓(x) = exp

�
✓

>
s(x)�A(✓)

�

µ = E✓[s(x)]

A

⇤
(µ) = sup

✓
✓

>
µ�A(✓) = E✓(µ)[log p✓(µ)(x)]

µ(✓) = rA(✓) ✓(µ) = rA⇤(µ)

M
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Arbitrary Model as Extended Exponential Family 

! Prior p0(x) in exponential family, log likelihoods li(x).

! Bayesian learning can now be posed as computing the mapping            :

!                         is the log marginal probability of data.
! Example: Gaussian exponential family, s(x) = [x; x2]

✓̃ 7! µ̃

arg max

µ̃2M̃
˜✓>µ̃� ˜A⇤

(µ̃)

p(x|y) / exp(✓

>
0 s(x))

NY

i=1

exp(li(x))

= exp([✓0; 1 . . . 1]
>
[s(x); l1(x) . . . lN (x)])

p(x|y) = exp(

˜

✓

>
s̃(x)� ˜

A(

˜

✓))

µ̃ = [E✓̃[x];E✓̃[x
2];E✓̃[`1(x)] . . .E✓̃[`N (x)]]

Ã(✓̃)�A(✓0)



Big Data and Bayesian Learning Yee Whye Teh

Variational Inference

! Intractable optimization problem: 
! intractable negative entropy 
! intractable mean domain.

! Variational inference methods approximate both in different ways 
[Wainwright & Jordan 2008].

! Mean-field variational inference, variational Bayes [Hinton & van Camp 
1993, Beal 2003, many others]

! Bethe approximation, loopy belief propagation [Frey & MacKay 1997, 
Murphy et al 1999, Yedidia et al 2001, many others]

! Expectation propagation [Minka 2001, many others]

arg max

µ̃2M̃
˜✓>µ̃� ˜A⇤

(µ̃)
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Mean-Field Variational Inference

! Target posterior distribution:
! Approximating posterior: 

! Want q to be as close as possible to p, measured by KL divergence

! If no constraints on q, equivalent to previous formulation

! Lower bound on the log marginal data probability:

p(x|y) = exp(

˜

✓

>
s̃(x)� ˜

A(

˜

✓))

arg max

µ̃2M̃
˜✓>µ̃� ˜A⇤

(µ̃)

q(x)

KL(qkp) =Eq [log q(x)� log p(x|y)]
=Eq[log q(x)]� ˜

✓

>Eq[s̃(x)] +
˜

A(

˜

✓) � 0

L(q) :=˜

✓

>Eq[s̃(x)]� Eq[log q(x)]  ˜

A(

˜

✓)

L(q)�A(✓0)  Ã(✓̃)�A(✓0)
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Mean-Field Variational Inference

! If q assumed to have some simplifying form, leads to what is typically 
known as variational inference or variational Bayes. 

! Suppose that our model includes latent variables for each observation yi

! Posterior over x, z is intractable.  Assume variational posterior factorises 
instead,

! To maximise L, alternatively maximize wrt qx, qz,

q(x, z) = q

x

(x)q
z

(z)

q

x

(x) / exp(

˜

✓

>E
q

z

[s̃(x, z)])

q

z

(z) / exp(

˜

✓

>E
q

x

[s̃(x, z)])

p(x, y, z) = p(x)
NY

i=1

p(zi)p(yi|zi, x)

L(q
x

, q

z

) =

˜

✓

>E
q

[s̃(x, z)]� E
q

[log q(x, z)]

=

˜

✓

>E
q

x

q

z

[s̃(x, z)]� E
q

x

[log q

x

(x)]� E
q

z

[log q

z
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Mean-Field Variational Inference

! With model structure:

! Updates become:

˜

✓
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i
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Stochastic Variational Inference

! When N>>1, updates are expensive as each iteration requires computations 
on all observations.

! Say the variational posterior of x is parameterised as

! One can instead optimise L wrt λ using stochastic natural gradient ascent 
[Robbins & Monro 1951, Bottou 1996], [Amari 1998, Sato 2001].

q

x

(x) / exp

�
�

>
s(x)

�

[Hoffman et al 2010, Mimno et al 2012]
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Stochastic Gradient Optimisation

! Given an objective function f(x) to be maximized.
! Stochastic gradient ascent:

! With unbiased and finite variance gradient estimates

! Convergent with step size condition

! [Robbins & Monro  1951]

1X

t=1

�t = 1
1X

t=1

�2t < 1

x
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t

+
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Stochastic Gradient Ascent for Maximum a Posteriori

! Joint log probability is

! To find xMAP, use stochastic gradient ascent

! See [Bottou 1996] and many others.

f(x) = log p(x) +

NX

i=1

log p(yi|x)

rf(x) = r log p(x) +

NX

i=1

r log p(yi|x)

brf(x) = r log p(x) +

N

n

nX

j=1

r log p(y⌧j |x)

xt+1 = xt + ✏t
brf(x)
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Stochastic Variational Inference

! The variational posterior of x is parameterised as                                          
with mean parameter                                  . 

! Variational objective is

! Gradient is

! Stochastic natural gradient is

! Update:

q

x
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[Hoffman et al 2013, Mimno et al 2012]
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Example: Latent Dirichlet Allocation

[Hoffman et al 2013, Mimno et al 2012]
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[Hoffman et al 2013,  
Mimno et al 2012]
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Generic (Bayesian) Learning on Big Data

! Stochastic optimisation using mini-batches.
! Stochastic gradient optimisation.
! Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]
! Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, 

Teh et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler 
& Shang 2015…]

! Distributed/parallel computations on cores/clusters/GPUs.
! MapReduce, parameter server.
! Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013, 

Wang & Dunson 2013, Stanislav et al 2014]
! Sampling via Moment Sharing [Xu et al 2014]
! Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Variational Inference and Markov chain Monte Carlo

! Variational inference expresses posterior computation as optimisation of an 
approximate system.

! Access to large body of optimisation methods.
! Approximation error hard to quantify.

! Monte Carlo methods express posterior computation as random sampling.
! Markov chain Monte Carlo: posterior as the stationary distribution.
! Typically more expensive but more accurate.
! Exact asymptotically
! Approximation error also hard to quantify given finite computation.

! Variance vs bias vs computation
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Random Walk Metropolis

! Current state
! Proposed state 
! Accept proposal with probability

! Many, many advances since [Metropolis et al 1953, Hastings 1970].

! Big data: acceptance ratio expensive to compute.
! Random walk behaviour mixes very inefficiently.

xt

x

⇤ ⇠ N (xt, ✏)

min

✓
1,

p(x⇤
, y)

p(xt, y)

◆
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Metropolis Adjusted Langevin Algorithm

! Use local gradient information to improve proposal distribution                   
[Roberts & Tweedie 1996]

! Obtained as Euler-Maruyama discretisation of (overdamped) Langevin 
dynamics:

! Big data: both acceptance ratio and proposal distribution expensive to 
compute.

x
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2
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Stochastic Gradient Optimisation

! Proposal update very similar to stochastic gradient ascent:

! Convergent with step size condition
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Stochastic Gradient Langevin Dynamics

! Plug in stochastic gradient into Metropolis adjusted Langevin algorithm

! Ignore Metropolis-Hastings acceptance step (!)
! Step-size requirements apply, εt → 0 slowly.

! Two sources of noise:
! Injected Brownian noise
!Gradient noise

x
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Stochastic Gradient Langevin Dynamics

! As εt → 0:
!Variance of gradient noise is O(εt2) while variance of injected noise is εt >> εt2.
!MH acceptance  probability approaches 1, so we can ignore the expensive MH 

accept/reject step.
! εt → 0 slowly enough, so dynamics still able to explore whole parameter 

space.

! Teh et al (2016), Vollmer et al (forthcoming) more detailed analysis.
!O(t-1/3) convergence rate.
!Not due to decreasing step size, rather due to lack of MH correction.
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Convergence with Decreasing Step Sizes

! When using decreasing step sizes εt → 0, a central limit theorem for SGLD 
can be derived.  Let Tt = Σs≤t εs.

!When fluctuations dominates,

!When bias dominates,

!When fluctuations and bias balanced,

! Optimal step size sequence has form εt = (t0+t)-1/3 with Tt ≍ t2/3.
! [Teh et al JMLR 2016]

lim
t!1

T 1/2
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Convergence with Constant Step Sizes

! t steps of SGLD with constant step size ε, generating x1,…xt.
! Estimator:

! Weak analysis Bias:

! Variance:

! Optimal ε gives MSE of O(t-2/3).
! [Vollmer et al (forthcoming)]
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Stochastic Gradient MCMC

! SGLD obtained as discretisation of overdamped Langevin dynamics.
! Alternative SGMCMC algorithms can be constructed by

! constructing a SDE with the posterior as the stationary distribution
!discretising time in some way.

! Riemannian SGLD for probability simplices [Patterson & Teh 2013]
! Stochastic gradient Hamiltonian Monte Carlo [Chen et al 2014]
! Stochastic gradient Nose-Hoover thermostats [Din et al 2015, Leimkuhler & 

Shang 2015]
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A Complete Recipe for SGMCMC

! [Ma et al 2015] showed a complete recipe for all SDEs with a desired 
stationary distribution p(x).

! I.e. any SDE with stationary distribution p(x) has the form

! Large relevant literature in applied mathematics.
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Stochastic Gradient Hamiltonian Monte Carlo

! A naive generalisation of SGLD to use Hamiltonian dynamics would be to 
introduce a momentum variable ρ.

! Does not fit into framework of [Ma et al 2015].  
! Instead, need to introduce a friction term

! [Chen et al 2014]
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Generic (Bayesian) Learning on Big Data

! Stochastic optimisation using mini-batches.
! Stochastic gradient optimisation.
! Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]
! Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, Teh 

et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler & 
Shang 2015…]

! Distributed/parallel computations on cores/clusters/GPUs.
! MapReduce, parameter server.
! Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013, 

Wang & Dunson 2013, Stanislav et al 2014]
! Sampling via Moment Sharing [Xu et al 2014]
! Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Machine Learning on Distributed Systems

y1i y2i y3i y4i

! Distributed storage

! costly network 
communications

! Distributed 
computation
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Parameter Server

! Parameter server [Ahmed et al 2012], Downpour/DistBelief [Dean et al 
2012].

parameter server:
• parameter x

worker:
• xi = x
• SGD updates 

to xi’ 
• returns       
Δxi = xi’ - xi

y1i y2i y3i y4i
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Bayesian Learning

y1i y2i y3i y4i

p(x | y) / p(x)
mY

j=1

IY

i=1

p(yji |x)
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Bayesian Learning

y1i y2i y3i y4i

! Not feasible exactly.

! Approximations:
! Monte Carlo sampling
! Variational inference

p(x | y) / p(x)
mY

j=1

IY

i=1

p(yji |x)



! Only communication at 
the combination stage.
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Embarassingly Parallel MCMC Sampling

y1i y2i y3i y4i

Treat as independent
inference problems.
Collect samples.

“Combine” samples together.

[Scott et al 2013, Neiswanger et al 2013, 
Wang & Dunson 2013, Stanislav et al 2014]

{xs}s=1...S

{xjs}j=1...m,s=1...S
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Consensus Monte Carlo

! Each worker machine j collects S samples {xjs}  from:

! Master machine combines samples by weighted average:

[Scott et al 2013]

pj(x | yj) = p(x)1/m
IY

i=1

p(yji|x)
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1
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Consensus Monte Carlo

! Combination is correct if local posteriors are Gaussian.

! Weights are local posterior precisions.

! If not Gaussian, unclear how this can work.

[Scott et al 2013]

xs =

0
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Approximating Local Posterior Densities

! [Neiswanger et al 2013] proposed methods to combine estimates of 
local posterior densities instead of samples:

!Parametric: Gaussian approximation.
!Nonparametric: kernel density estimation based on samples.
!Semiparametric: Product of a parametric Gaussian approximation 

with a nonparametric KDE correction term.

! Combination: Product of (approximate) densities.
! Sampling: Resort to Metropolis-within-Gibbs.
! [Wang & Dunson 2013]’s Weierstrass sampler is similar, using 

rejection sampling instead.

[Neiswanger et al 2013, Wang & Dunson 2013]

p(x | y) /
mY

j=1

pj(x | yj) ⇡
mY

j=1

1

S

SX

s=1

Khj (x;xjs)
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Embarassingly Parallel MCMC Sampling

! Unclear how to combine worker samples                                       
sensibly.

! Particularly if local posteriors on worker                                              
machines do not overlap. 

! Combination at master involves:
!weighted average of samples [Scott et al]
!Gaussian approximation [Neiswanger et al]
!KDE [Neiswanger, Wang & Dunson,                                       

Stanislav et al]
Figure from Wang & Dunson
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Intuition and Desiderata
! Distributed system with independent 

MCMC sampling. 

! Identify regions of high (global) posterior 
probability mass.

! Each local sampler is based on local data, 
but “concentrate on high probability 
regions”.

! High probability regions found by 
identifying its moments using small 
amount of communication during learning. Figure from Wang & Dunson
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Generic (Bayesian) Learning on Big Data

! Stochastic optimisation using mini-batches.
! Stochastic gradient optimisation.
! Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]
! Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, Teh 

et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler & 
Shang 2015…]

! Distributed/parallel computations on cores/clusters/GPUs.
! MapReduce, parameter server.
! Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013, 

Wang & Dunson 2013, Stanislav et al 2014]
! Sampling via Moment Sharing [Xu et al 2014]
! Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Local and Global Posteriors 

! Each worker machine j has access only to its data subset.

! where pj(x) is a local prior and pj(x | yj) is local posterior.

! The (target) global posterior is

! Choose local priors pj(x) so that

! Use expectation propagation (EP) [Minka 2001] to find good local priors.

pj(x | yj) = pj(x)
IY

i=1

p(yji |x)

p(x | y) / p(x)
mY

j=1

p(yj |x) / p(x)
mY

j=1

pj(x | yj)
pj(x)

E
pj(x|yj)[s(x)] = s0 8j



Big Data and Bayesian Learning Yee Whye Teh

Expectation Propagation

! If N is large, the worker j likelihood term p(yj | x) should be well 
approximated by Gaussian

! Parameters fit iteratively to minimize KL divergence:

! Optimal qj is such that first two moments of                           agree with 
! At convergence, 

[Minka 2001]

N (·;µ,⌃)pj(·) pj(·|y)

p(yj |x) ⇡ qj(x) = N (x;µj ,⌃j)

p(x | y) ⇡ p

j

(x | y) / p(y
j

|x) p(x)
Y

k 6=j

q

k

(x)

| {z }
pj(x)

q

new
j

(·) = arg min
N (·;µ,⌃)

KL
�
p

j

(· | y) kN (·;µ,⌃)p
j

(·)
�

E
pj(x|yj)[s(x)] = E

p(x)
Q

k qk(x)[s(x)] 8j
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Expectation Propagation

! Update performed as follows:
!Compute (or estimate) first two moments μ*, Σ* of pj( x | y).
!Compute μj, Σj so that N(.; μj, Σj) pj(.) has moments μ*, Σ*.

! In high-dimensions, can use diagonal covariances.
! Generalizes to other exponential families.
! EP tends to converge very quickly (when it does).
! At convergence, all local posteriors agree on their first two moments.

p(x | y) ⇡ p

j

(x | y) / p(y
j

|x) p(x)
Y

k 6=j

q

k

(x)

| {z }
pj(x)

q

new
j

(·) = arg min
N (·;µ,⌃)

KL
�
p

j

(· | y) kN (·;µ,⌃)p
j

(·)
�
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Big Picture
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Demonstrative Example

! Simple 2D Gaussian example.

! 3 worker machines.

! 5000 MCMC samples used to 
estimate sufficient statistics per 
iteration.

! Each frame corresponds to 100 
samples.
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! 3 worker machines.

! 5000 MCMC samples used to 
estimate sufficient statistics per 
iteration.

! Each frame corresponds to 100 
samples.
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Bayesian Logistic Regression

! Simulated dataset.
!d=20, # data items N=1000.

! NUTS based sampler.
!# workers m = 4,10,50.
!# MCMC iters T = 1000,1000,10000.

! # EP iters k given as vertical lines.
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Bayesian Logistic Regression

! MSE of posterior mean, as function of total # iterations.

3.2 6.4 9.6 12.8 16 19.2
x 105
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Bayesian Logistic Regression

! Approximate KL as function of # nodes.

m=8 m=16 m=32 m=48 m=640

0.5
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2

2.5
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Spike-and-Slab Sparse Regression

0 500 1000 1500 2000
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k × T × N/m × 10
3

0 1000 2000 3000 4000
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3

! Posterior mean coefficients.
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Stochastic Natural-gradient EP

! EP has no guarantee of convergence.
! EP technically cannot handle stochasticity in moment estimates.
! Long MCMC run needed for good moment estimates.
! No clear understanding of convergence and quality of approximation in 

stochastic case.
! Fails for neural nets and other complex high-dimensional models.

! Stochastic Natural-gradient EP (Teh et al 2015):
!Alternative variational algorithm to EP.
!Convergent, even with Monte Carlo estimates of moments.
!Double-loop algorithm [Welling & Teh 2001, Yuille 2002, Heskes & Zoeter 

2002]
!Arxiv manuscript 1512.09327.
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Demonstrative Example
EP (500 samples) new alg (500 samples)

new alg (50 samples)new alg (50 samples) (slowed down)
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Exponential Families

! Sufficient statistics s, natural parameters θ, log partition function A(θ).

! Equivalent parameterisation as mean parameters μ:

! A(θ) is convex with convex domain Θ.  
! Convex conjugate is the negative entropy A*(μ) with convex domain      :

! Derivatives of A and A* convert between natural and mean parameters:

p✓(x) = exp

�
✓

>
s(x)�A(✓)

�

µ = E✓[s(x)]

A

⇤
(µ) = sup

✓
✓

>
µ�A(✓) = E✓(µ)[log p✓(µ)(x)]

µ(✓) = rA(✓) ✓(µ) = rA⇤(µ)

M
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Arbitrary Model as Extended Exponential Family 

! Prior p0(x) in exponential family, log likelihoods lj(x) for each worker j.

! Bayesian learning can now be posed as computing the mapping            :

!  Variational inference: 
! approximate negative entropy and 
! approximate mean domain.

✓̃ 7! µ̃

arg max

µ̃2M̃
˜✓>µ̃� ˜A⇤

(µ̃)

p(x|y) / exp(✓

>
0 s(x))

mY

j=1

exp(lj(x))

= exp([✓0; 1 . . . 1]
>
[s(x); l1(x) . . . lm(x)])

p(x|y) = exp(

˜

✓

>
s̃(x)� ˜

A(

˜

✓))
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Expectation Propagation as Variational Approximation

! Write mean parameters                              .
! Approximate entropy as sums of local entropies,                                      

approximate mean domain as intersections of local domains:

! Local entropies/domains are those associated with a single likelihood term 
(and the prior).

! Variational optimization problem:

µ̃ = [µ; ⌫1 . . . ⌫m]

Ã⇤([µ, ⌫1, . . . , ⌫n]) ⇡ A⇤(µ) +
mX

j=1

(A⇤
j (µ, ⌫j)�A⇤(µ)) M̃ ⇡

m\

j=1

Mj

max

µ0,[µj ,⌫j ]mj=1

✓>0 µ0 +

mX

j=1

1 · ⌫j �A⇤
(µ0)�

mX

j=1

(A⇤
j (µj , ⌫j)�A⇤

(µj))

subject to µ0 2 M
[µj , ⌫j ] 2 Mj for j = 1, . . . ,m

µ0 = µj for j = 1, . . . ,m
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Expectation Propagation as Variational Approximation

! Introducing Lagrange multipliers for the equality constraints,

! EP can now be derived as fixed-point equations:
!KKT conditions (setting derivatives to zero).

! Problems:
!Non-convex due to +A*(μi) terms.
!No guarantee of convergence.

max

µ0,[µj ,⌫j ]mj=1

min

[�j ]mj=1

✓>0 µ0 �A⇤
(µ0) +

mX

j=1

�
⌫j � �>

j (µj � µ0)�A⇤
j (µj , ⌫j) +A⇤

(µj)
�

subject to µ0 2 M
[µj , ⌫j ] 2 Mj for j = 1, . . . ,m
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Convergent Expectation Propagation

! Introduce additional parameters θj’ and - KL terms

! where the KL divergence is                                                        .
! maximizing over θj’ results in the original problem.

! Alternative interpretation of [Heskes & Zoeter 2002]’s convergent EP.
!Different model structure.
!Makes clear the interplay between the cost function and constraints.

max

[✓0
j ]

m
j=1

max

µ0,[µj ,⌫j ]mj=1

✓>0 µ0 +

mX

j=1

⌫j �A⇤
(µ0)�

mX

j=1

(A⇤
j (µj , ⌫j)�A⇤

(µj) + KL(µjk✓0j))

subject to µ0 2 M
[µj , ⌫j ] 2 Mj for j = 1, . . . ,m

µ0 = µj for j = 1, . . . ,m

KL(µjk✓0j) = A⇤(µj) +A(✓0j)� µ>
j ✓

0
j
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Convergent Stochastic Approximation Algorithm

! Introduce Lagrange multipliers and simplifying,

! Noticing that cost function is concave in μ0, μj, and νj, we can maximize 
over them (but not θj’) and obtain the dual problem,

! λj  can be interpreted as natural parameters of an exponential family 
approximation to the likelihood at worker j.

max

[✓0
j ]

max

µ0,[µj ,⌫j ]
min

[�j ]
✓>0 µ0 �A⇤

(µ0) +

mX
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⌫j � �>
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j (µj , ⌫j) + µ>

j ✓
0
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�

subject to µ0 2 M, [µj , ⌫j ] 2 Mj for j = 1, . . . ,m
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j ]

m
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[�j ]mj=1

A
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�
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�
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�
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Stochastic Natural-gradient EP (SNEP)

! Can be optimised using a double-loop algorithm.
! Inner loop: stochastic natural gradient descent

! xi are samples (we use SGLD with adaptive mass parameter) from the 
local posterior:

! Outer loop: update auxiliary variables

! Distributed learning: 
! Communicate with master for approximate conditional θ0 + Σk≠j λk.
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j ) + ✏t

0
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Experiments on Distributed Bayesian Neural Networks

! Bayesian approach to learning neural network:
! compute parameter posterior given complex neural network likelihood.
!Diagonal covariance Gaussian prior and exponential-family approximation.

! Two datasets and architectures: MNIST fully-connected, CIFAR10 convnet.

! Implementation in Julia.
!Workers are cores on a server.
!SGLD sampler with adaptive mass parameter (preconditioner).

!Adagrad [Duchi et al 2011]/RMSprop [Tieleman & Hinton 2012] type 
adaptation.

!Evaluated on test accuracy.
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MNIST 500x300 Fully-Connected, Varying #synciters
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CIFAR10 AlexNet, Varying #workers
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MNIST 500x300 Fully-Connected, vs Adam



Big Data and Bayesian Learning Yee Whye Teh

Concluding Remarks

! Bayesian framework should continue to be important in era of Big Data.

! Thank you!
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