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Part I: Causal Inference (CI) via 
Causal Bayesian Networks (CBNs)

Part II: CBNs and CI for ML Fairness 
  



Machine Learning

ML Prerequisites

Linear Models
Regression, Classification, 

Maximum Likelihood, Bayesian Inference
Neural Networks

Backpropagation, Automatic Differentiation, 
Gradient Optimization, Deep Learning Graphical Models

Directed, Undirected, Factor Graphs, 
Conditional Independence, Message 

PassingSequential Decision Making 
Reinforcement  Learning

Approximate Inference
Variational Inference, 
Monte-Carlo Methods

Statistical Causality

... 

ML Approaches and Methods

ProbabilityCalculus
Optimization

Statistics

Linear Algebra 



ML Prerequisites
Basic Understanding of Statistical Causality, 

... 

Core Ingredients of ML Development/Evaluation/Deployment 
Causally-based Methods/Considerations,

...

Machine Learning

1. Knowledge barrier
2. Difficulties in identification (black-box)
3. Difficulties in estimation 
4. Not a bottleneck

Obstacles



Part I
Causal Inference (CI)

via
Causal Bayesian 
Networks (CBNs)



Causal Inference
Separation of Statistical Dependence into Causal 
Influence and Spurious Correlation 

Drug Example

● Doctor gives drug more often to male individuals 
G→D  

● Recovery is influenced by drug D→R and gender 
G→R  (male individuals recover more often)                

D R

G

➔ Causality: Models, Reasoning, and Inference. 
J. Pearl.

Goal:  Learn from data whether giving the drug helps 
recovery 

Statistical Dependence (ML Approach)

Conditional observational distribution p(R | D)                    
Measures statistical dependence between D and R 
containing both causal influence (D → R) and 
spurious correlation  (D ← G → R)  

Causal Influence (Causal Inference Approach)

Conditional interventional distribution     

Measures only causal influence (D → R) 

Identification Problem: Answer whether it is 
possible / how to express a causal quantity as a 
functional of the observational distribution p, 
using knowledge of the causal graph  

Estimation Problem: How to estimate the functional

Causal Inference via CBNs 

CBN

https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B


(Causal) Bayesian Networks
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➔ Probabilistic Graphical Models: Principles and 
Techniques. D. Koller, N. Friedman.

➔ Bayesian Reasoning and Machine Learning. 
D. Barber.

➔ Pattern Recognition and Machine Learning. 
C. Bishop.

➔ Causal Inference in Statistics: A Primer. 
J. Pearl, M. Glymour, N. P. Jewell.

➔ Elements of Causal Inference  Foundations and Learning 
Algorithms. J. Peters, D. Janzing, B. Schölkopf.

➔ Causality: Models, Reasoning, and Inference. 
J. Pearl.

https://mitpress.mit.edu/books/probabilistic-graphical-models
https://mitpress.mit.edu/books/probabilistic-graphical-models
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
http://bayes.cs.ucla.edu/PRIMER
http://bayes.cs.ucla.edu/PRIMER
https://mitpress.mit.edu/books/elements-causal-inference
https://mitpress.mit.edu/books/elements-causal-inference
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
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Direct link between two nodes represents 
statistical relationship

Direct link between two nodes represents 
causal relationship

Visually express 
statistical (in)dependence 

Visually express 
causal dependence

Bayesian Networks Causal Bayesian Networks
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Bayesian Networks Causal Bayesian Networks

A Y A Y

  Ice Cream 
Sales

   Crime Rates A Y

C

 Temperature

  Ice Cream 
Sales

         Crime Rates

Ice Cream Example

Study shows that increase in ice 
cream sales A is correlated with 
increase in crimes Y
Not because ice cream causes 
crime, but because both ice 
cream sales and crimes are more 
common in hot weather



Bayesian Networks Causal Bayesian Networks

Directed acyclic graph    in which each node is 
associated with conditional distribution given its 
parents 

Joint distribution of all nodes is given by the 
product of all conditional distributions

Bayesian network with special semantic:
Each conditional distribution represents a causal 
mechanism 

X is a cause of (influences) Y if there exists a 
causal path from X to Y

Causal path := directed path 
→  X is a cause of Y  if X is an ancestor of Y
→  X is a cause of Y  if Y is a descendant of X

Q

D Y

A

● A is a cause of Y
● A is not a cause of Q



Statistical Independence in (Causal) 
Bayesian Networks (d-separation) X

A Y

C

B

E

Z

X is d-separated from Y  by Z (                     ) if all 
paths from any element of X to any element of Y are 
closed (or blocked) given Z      

                     A path is closed if at least one of the following 
conditions is satisfied

1. There is a collider (node with 2 parents) on 
the path such that neither the collider nor 
any of its descendants belong to the 
conditioning set Z

2. There is a non-collider on the path which 
belongs to the conditioning set Z

d-separation

If X is d-separated from Y  by Z then X and Y are 
statistically independent given Z (                       )

d-separation implies statistical independence
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is open

Statistical Independence in (Causal) 
Bayesian Networks (d-separation)

X is d-separated from Y  by Z (                     ) if all 
paths from any element of X to any element of Y are 
closed (or blocked) given Z      

                     A path is closed if at least one of the following 
conditions is satisfied

1. There is a collider (node with 2 parents) on 
the path such that neither the collider nor 
any of its descendants belong to the 
conditioning set Z

2. There is a non-collider on the path which 
belongs to the conditioning set Z

d-separation

If X is d-separated from Y  by Z then X and Y are 
statistically independent given Z (                       )

d-separation implies statistical independence



is closed

  Conditioning on C opens the path

X

A Y

C

B

E

Z

Statistical Independence in (Causal) 
Bayesian Networks (d-separation)
d-separation

X is d-separated from Y  by Z (                     ) if all 
paths from any element of X to any element of Y are 
closed (or blocked) given Z      

                     A path is closed if at least one of the following 
conditions is satisfied

1. There is a collider (node with 2 parents) on 
the path such that neither the collider nor 
any of its descendants belong to the 
conditioning set Z

2. There is a non-collider on the path which 
belongs to the conditioning set Z

d-separation

If X is d-separated from Y  by Z then X and Y are 
statistically independent given Z (                       )

d-separation implies statistical independence



Identification of Causal 
Quantities
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➔ Probabilistic Graphical Models: Principles and 
Techniques. D. Koller, N. Friedman.

➔ Bayesian Reasoning and Machine Learning. 
D. Barber.

➔ Pattern Recognition and Machine Learning. 
C. Bishop.

➔ Causal Inference in Statistics: A Primer. 
J. Pearl, M. Glymour, N. P. Jewell.

➔ Elements of Causal Inference  Foundations and Learning 
Algorithms. J. Peters, D. Janzing, B. Schölkopf.

➔ Causality: Models, Reasoning, and Inference. 
J. Pearl.

https://mitpress.mit.edu/books/probabilistic-graphical-models
https://mitpress.mit.edu/books/probabilistic-graphical-models
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
http://bayes.cs.ucla.edu/PRIMER
http://bayes.cs.ucla.edu/PRIMER
https://mitpress.mit.edu/books/elements-causal-inference
https://mitpress.mit.edu/books/elements-causal-inference
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B


Statistical Dependence between A and Y versus Causal Influence of A on Y

Causal influence

Conditional distribution of Y given A 
without the information from A traveling 
through  

Statistical 
Dependence 

Causal 
Influence A Y

C

D

● Causal paths   

● Non-causal path (back-door path) 



A Y

C

Actual Hard Intervention

A Y

C

1. Get new data from interventional distribution                                       
where A i set to value a (does not depend on 
C) 

Causal Influence

2. Compute conditional interventional distribution                           
                     using the interventional data  



Hypothetical Hard Intervention

1. Change             into                                        

2. Leave other conditional distributions as in p

Causal Influence

Interventional 
distribution

Observational 
distribution

A Y

C

A Y

C 3. Express conditional interventional distribution as 
a functional of the observational distribution  



Statistical Dependence Causal Influence

A Y

C

A Y

C



Statistical Dependence Causal Influence

A Y

C

A Y

C

Y

C

NOTE



Drug Example
Separation of Causal Influence from Spurious 
Correlation

Data Generation Mechanism

● Doctor gives drug more often to male 
individuals G→D  

● Recovery is influenced by drug D→R and 
gender G→R                   

D R

G

➔ Causality: Models, Reasoning, and Inference. 
J. Pearl.

https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B


Drug Example
Separation of Causal Influence from Spurious 
Correlation

● According to the female data and to 
the male data the drug decreases 
recovery

● According to the combined male and 
female data the drug increases 
recovery

We believe this is a paradox as we wrongly 
believe that conditional distribution gives 
causal effect

Example of Simpson's Paradox

Statistical association that holds in several different 
groups of data is reversed when groups are combined



Simpson’s Paradox Conditional Distribution



Simpson’s Paradox Causal Influence

D R

G



Identification via Do-calculus

Three graphical rules that, combined, might allow to express a causal 
quantity as a functional of the observational distribution 

Might: In the presence of latent variables, for certain graph structures 
identification is not possible

Rule 1 - Insertion/Deletion of Observations

Rule 2 - Action/Observation Exchange Rule 3 - Insertion/Deletion of Actions

intervening

conditioning



Rules of Do-calculus (Simpler Version)

Intuition
The graph          has all links emerging from A removed. 
If Y is independent of A in this graph it means that all 
backdoor paths (non-causal paths) are closed, therefore the 
interventional and conditional distributions are equivalent.   
The only open paths are causal paths!

Rule 2 - Action/Observation Exchange

A Y

B

D

C

A Y

B

D

C

1. Backdoor path from A to Y: A←  … Y
Backdoor paths must be non-causal as otherwise 
we would create a cycle (A is a cause of Y which is a 
causal of A)

2. Frontdoor path from A to Y: A→ … Y 
Only causal frontdoor paths are open, as to be 
non-causal a frontdoor path must contain a collider 
A→ …→ Z←… Y



Rules of Do-calculus (Simpler Version)

Intuition
The graph          has all links emerging from A removed. 
If Y is independent of A in this graph it means that all 
backdoor paths (non-causal paths) are closed, therefore the 
interventional and conditional distributions are equivalent.   
The only open paths are causal paths!

Rule 2 - Action/Observation Exchange

A Y

B

D

C

A Y

B

D

C

Rule 3 - Insertion/Deletion of Action

Intuition
The graph          has all links pointing to A removed. 
If Y is independent of A in this graph it means that 
there are no causal paths from A to Y, i.e. A is not a 
cause of Y, therefore intervening on A or ignoring A is 
the same. There is no influence reaching Y from A.
The only possibly open paths are non-causal paths!

A Y

B

D

C

A Y

B

D

C



Rules of Do-calculus

Backdoor Criterion

Rule 2 
Action / Observation exchange

Rule 3 
Insertion / Deletion of Action

If Z blocks all backdoor paths from 
A to Y (                         ) 
No node in Z is a descendant of A 

A Y

B

D

Z

A Y

B

D

Z
1. Z is in a backdoor path from A to 
Y: Removing links pointing to A 
blocks the subpaths A←  … Z 
A frontdoor path from A to Z must 
contain a collider otherwise Y 
would be a cause of A.

2. Z is in a frontdoor path from A 
to Y: The subpath A→ … Z cannot 
be causal, as otherwise Z would 
be a descendant of A, and 
therefore is closed (must contain 
a collider).

Called Adjustment Criterion for a set Z satisfying 
different conditions (called adjustment set)



Rules of Do-calculus

Frontdoor Criterion

YA Z

B

Rule 2 
Action / Observation exchange

       Backdoor paths from A to Z: are closed.  
        Causal paths from from A to Z: are cut in  
        the graph with emerging links from A 
        removed.

Rule 3 
Insertion / Deletion of Action

Backdoor paths from A to Y: are cut 
in the graph with incoming links into 
A removed.
Causal paths from from A to Y: Z 
intercepts these paths which are 
cut in the graph with emerging links 
from Z removed.

Rule 2 Action / Observation 
exchange

Backdoor Criterion

1. If all backdoor paths from Z to Y are blocked by 
A (                             )
2. There is no open backdoor path from A to Z 
3. Z intercepts all causal paths from A to Y



Estimation of Causal 
Quantities

  

X

A

Z

C

E

Y



Estimation of Causal Quantities

Using knowledge of the CBN, do-calculus enables us (when possible) to obtain  
identification formulas, i.e. formulas that express a causal quantity as a functional of the 
observational distribution 

1. Obtain an estimate of an identification formula with desirable properties

2. Choose between several identification formulas 

➔ Asymptotically Best Causal Effect Identification with 
Multi-Armed Bandits. A. Malek, S. Chiappa, 2021.

https://papers.nips.cc/paper/2021/hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html
https://papers.nips.cc/paper/2021/hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html


Selection of Identification Formulas 

YA Z2

Z1

Asymptotic Variance 

[1] Graphical Criteria for Efficient Total Effect Estimation via 
Adjustment in Causal Linear Models. 
L. Henckel, E. Perković, M. H. Maathuis, 2019.

[2] Efficient Adjustment Sets for Population Average Causal 
Treatment Effect Estimation in Graphical Models. 
A. Rotnitzky and E. Smucler, 2020.

[3] On efficient adjustment in causal graphs. J. Witte, L. 
Henckel, M. H. Maathuis, V. Didelez, 2020.

[4] Efficient Adjustment Sets in Causal Graphical Models 
with Hidden Variables. E. Smucler, F. Sapienza, A. Rotnitzky, 
2021.

Graphical Criteria for Selection of Adjustment Sets

● Adjustment criterion using

● Frontdoor criterion using

Identification Formulas for 

● Statistical Considerations: Asymptotic variance (each 
formula associated with asymptotically linear estimator
of    → convergence rate             ) 

● Practical Considerations: Costs in observing covariates



Graphical Criteria for Selection of Adjustment Sets 

YZ1 A

Z4Z2 Z3

Adjustment sets 

 overadjustment set

precision set

 overadjustment sets

overadjustment set

 2. Adjustment set

 2. Adjustment set

2. Adjustment set
not an overadjustment set

 2. Adjustment set

1. Adjustment set

Adding to the adjustment set B a precision set G, 
i.e. variables that d-separated from A by B 
(                    ) gives an adjustment set  B U G with 
smaller asymptotic variance

Removing from the adjustment set B U G the 
overadjustment set B, i.e. variables that are 
d-separated from Y by G and A (                           ) 
gives an adjustment set G with smaller asymptotic 
variance

1.
           Addition of Precision Set

2.
     Removal of Overadjustment Set



Graphical Criteria for Selection of Adjustment Sets 

YZ1 A

Z4Z2 Z3

If B and G are adjustment sets with                            
and                                   then the variance of G is 
smaller than the variance of B                            

Comparison of Adjustment Sets

Cannot compare               and empty set

Causal nodes                   : Nodes on causal paths from A 
to Y, excluding A

The variance of the adjustment set 

is smaller than for any other adjustment set 

Forbidden nodes

Optimal Adjustment Set 

Variance of     smaller than variance of empty set latent variable

cannot select



Asymptotically Best Causal Effect 
Identification with Multi-Armed Bandit

Setting

● The investigator collects observational data

● Sequential strategy in which the investigator 
decides, observation-by-observation (rounds), 
which subset of variables to observe with the goal 
of identifying the best formula with the fewest 
observations 

Multi-Armed Bandits Formalism

Cast this setting into the best-arm-identification bandit 
framework, by considering each formula as one arm and 
by replacing the goal of learning the arm with the best 
mean with the goal of learning the formula with the best 
cost-adjusted asymptotic variance

Leverage algorithms from the bandit literature

Adapt LUCB and Successive Elimination (SE) by 
introducing finite-sample confidence sequences 
on                        (confidence bounds that hold for 
all formulas and all rounds simultaneously)

Goal:

Each arm k corresponds to an estimator     of    with 
asymptotic variance      and cost           

A selection method that is applicable to arbitrary 
identification formulas and accounts for both 
statistical performance and practical considerations 
must make use of data



Estimators of 

Asymptotically linear estimator     with nuisance function      (e.g. propensity score for IPW) 

When need to estimate      , converge of      at rate slower than                could cause loss of 
asymptotically linearity (can happen if e.g.       is modelled with with neural networks)

Asymptotically linear estimators for any identification formula [Jung, Tian, Bareinboim 2021] using 
double machine learning             

Influence function      satisfying 

Asymptotically normal with variance

Can assume an uncentered influence function 

covariates for formula k, A, Y  



Estimating the Asymptotic Variance

● Our goal: estimate                                           and derive finite-sample confidence sequences

● Our estimator       for data      (inspired by [Chernozhukov et al., 2016])

○ Randomly split       into two folds 

○ Fit the nuisance function

○ Fit       with an empirical variance:

Main Theorem

              estimation of the asymptotic variance is possible whenever              estimation of    is possible



Confidence Sequence LUCB (CS-LUCB)

At each round t

● Sample arms 

● Sample arms  

● If                                                    return    
otherwise collect new data and update    
and 

Create gap between upper bounds of best arms 
and lower bounds of remaining arms 

   is at most   -suboptimal with probability at 
least          

lower bound



Linear Experiments

● 2M=3 =8 formulas from adjustment criterion
● One formula from frontdoor criterion ZM

YA Z0

ZmVm



Non-Linear Experiments

YA Z0

ZmVm



Part II
CBNs and CI for ML 

Fairness



Machine Learning deployed to 
make decisions that affect 

people lives can treat individuals 
unfairly on the basis of sensitive 
attributes such as race, gender, 

disabilities, etc. 

ML Fairness



College Admission Example
Characterising Patterns of 
Unfairness

Female applicants were rejected 
more often than male applicants 

Berkeley’s alleged sex bias (1974) 



College Admission Example
Characterising Patterns of 
Unfairness

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Fa
ir 

Fair 

Women spontaneously 
apply to departements with 
lower admission rates

Berkeley’s alleged sex bias (1974) 



A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Fa
ir 

Fair 

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Fa
ir

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

Un
fa

ir 

Partially 
unfair 

Unfair
Unfair

Women spontaneously 
apply to departements with 
lower admission rates

Women apply to departments 
with lower admission rates due 
to  due systemic historical or 
cultural pressures

Partially 
unfair 

College lower admission rates 
of departments chosen 
spontaneously more often by 
women

Different Possible Unfairness Scenarios 



Path-Specific Influence
  

X

A

Z

C

E

Y

➔ Probabilistic Graphical Models: Principles and 
Techniques. D. Koller, N. Friedman.

➔ Bayesian Reasoning and Machine Learning. 
D. Barber.

➔ Pattern Recognition and Machine Learning. 
C. Bishop.

➔ Causal Inference in Statistics: A Primer. 
J. Pearl, M. Glymour, N. P. Jewell.

➔ Elements of Causal Inference  Foundations and Learning 
Algorithms. J. Peters, D. Janzing, B. Schölkopf.

➔ Causality: Models, Reasoning, and Inference. 
J. Pearl.

https://mitpress.mit.edu/books/probabilistic-graphical-models
https://mitpress.mit.edu/books/probabilistic-graphical-models
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.cambridge.org/core/books/bayesian-reasoning-and-machine-learning/37DAFA214EEE41064543384033D2ECF0
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
http://bayes.cs.ucla.edu/PRIMER
http://bayes.cs.ucla.edu/PRIMER
https://mitpress.mit.edu/books/elements-causal-inference
https://mitpress.mit.edu/books/elements-causal-inference
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B


Causal Influence

A Y

C

D
Hard intervention → separate causal influence from 
spurious correlation 

Y

C

D

A Y

C

D



Path-Specific Influence

A Y

C

D
Different hard interventions on emerging links → 
separate causal influence along different causal paths

A Y

C

D

Y

C

D



Causal Influence 

Potential Outcome
Random variable with distribution

Path-Specific Potential Outcome

A Y

C

D

A Y

C

D

Random variable with distribution

Path-Specific Influence 



Average Treatment Effect  

Average Treatment Effect Path-Specific Effect

A Y

C

D

Measure difference of causal influence when A is 
set to A=a̅ and to A=a along A→Y, whilst keeping 
A=a along A→D→Y

A=a  along A→D→Y

Measure difference of causal influence when A is 
set to A=a̅ and to A=a 

A Y

C

D

Path-Specific Effect  



Path-Specific Effect 

YA L

C

M

Path-Specific Potential Outcome

Different hard interventions on emerging links

Causal paths

Need Structural Causal Models to Identify PSE

Different hard interventions on different causal paths

Path-Specific Potential Outcome



Path-Specific Effect 

YA L

C

M

Different hard interventions on different causal paths

Structural Causal Models 

Intervention on L = replace the function with value l

Exogenous (latent)

Endogenous



Path-Specific Effect 
Different hard interventions on different causal paths

YA L

C

M

● Causal effect along a path = product of coefficients

● Causal effect along a set of paths = sum of causal effects along 
all paths



Path-Specific Counterfactual PO 

YA L

C

M
Abduction
Infer randomness 
from observation

Specific realization of exogenous 
variables for individual/unit n 

Observation for individual/unit n 



CBNs and CI for Measuring 
Unfairness Underlying a Dataset

  

X

A

Z

C

E

Y

 Gender

College
Admission

➔ A Causal Bayesian Networks Viewpoint on Fairness. 
S. Chiappa, W. Isaac, 2019.

➔ Fairness in Machine Learning. 
L Oneto, S. Chiappa, 2020.

https://arxiv.org/abs/1907.06430
https://arxiv.org/abs/1907.06430
https://link.springer.com/chapter/10.1007%2F978-3-030-43883-8_7
https://link.springer.com/chapter/10.1007%2F978-3-030-43883-8_7


College Admission Example
Measuring Unfairness

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification



Path-Specific Fairness: Measure Influence of A on Y along A→Y and A→D→Y at 
the Population Level 

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification
A=a indicates female applicant
A=a̅ indicates male applicant

Measures difference in expectation when setting the 
value of A to male along A→Y and A→D→Y and to 
female along A→Q→Y wrt to setting it to female along 
all causal paths

Path-specific potential outcome 
A=a

A=a
A=a̅ A=a

A=a̅
Unfair Un

fa
ir 



Path-Specific Counterfactual Fairness: Measure Influence of A on Y along A→Y 
and A→D→Y for a Specific Individual 

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification
A=a indicates female applicant
A=a̅ indicates male applicant

from a female individual                               we 
answer the counterfactual question of whether the 
individual would have been admitted had she being 
male only along A→Y and A→D→Y

By conditioning  
A=a

on observation 

A=a
A=a̅

A=a
A=a̅ Unfair Un

fa
ir 



Path-Specific Counterfactual Fairness: Measure Influence of A on Y along A→Y 
and A→D→Y for a Specific Individual 

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification
A=a indicates female applicant
A=a̅ indicates male applicant

A=a

A=a
A=a̅

A=a
A=a̅ Unfair Un

fa
ir 

Useful viewpoint
Modification of       obtained by modifying part of the observation for 
which the value of A is different from the one observed



CBNs and CI for Developing Fair 
Prediction Models

X

A

Z

C

E

Y

 Gender

College
Admission

➔ Path-Specific Counterfactual Fairness. 
S. Chiappa, 2019.

➔ A General Approach to Fairness with Optimal 
Transport. S. Chiappa, R. Jiang, T. Stepleton, A. 
Pacchiano, H. Jiang, J. Aslanides, 2020.

➔ Graphical Conditions for Introduced Unfairness: 
Why Fair Labels Can Yield Unfair Predictions. 
C. Ashurst, R. Carey, S. Chiappa, T. Everitt, 2022

https://www.aaai.org/ojs/index.php/AAAI/article/view/4777
https://www.aaai.org/ojs/index.php/AAAI/article/view/4777
https://aaai.org/ojs/index.php/AAAI/article/view/5771
https://aaai.org/ojs/index.php/AAAI/article/view/5771
https://aaai.org/ojs/index.php/AAAI/article/view/5771
https://mitpress.mit.edu/books/elements-causal-inference
https://mitpress.mit.edu/books/elements-causal-inference
https://mitpress.mit.edu/books/elements-causal-inference


Difference with Measuring Unfairness in Datasets 

1
Need to not absorb 
bias in data in the 
model

2
Need to maintain 
accuracy

3
Training and deployment 
settings are different



Path-Specific Counterfactually Fair Predictor 

A

YD

 Gender

Department
   Choice

College
Admission

Q

 Qualification

A=a

A=a
A=a̅

A=a
A=a̅

● Training: Objective function that estimates p 
● Deployment: Observe                          and assign 

outcome as mean of

Need to enforce independence in the latent space 



Path-Specific Counterfactually Fair Predictor

A

YD

Q

Abduction

Action-Prediction

Y

from

Represent conditionals 
using neural networks

Deployment



A-Independent Representation Hd with Variational Autoencoder

Intractable 

Variational approximation

Encoder

weighting factor that determines the 
degree of independence

Maximise lower bound on the marginal 
log-likelihood with a penalty term for 
enforcing independence on A

Empirical distributions 
of         for male and 
female individuals



Unfairness underlying Data

● CBNs for describing 
different possible 
unfairness scenarios 
underlying data

● CBNs for measuring 
unfairness underlying 
data

Fair Prediction Models

● CBNs for developing 
fair prediction 
models

● Causal influence 
diagrams for auditing 
fair prediction 
models

         
CBNs and CI for ML 

Fairness
Formalization

Unified Framework
Complex Unfairness 

Scenarios



Beyond Prediction Models

● Design optimized 
policies under 
fairness constraint

         
CBNs and CI for ML 

Fairness

➔ Pragmatic Fairness: Developing Policies 
with Outcome Disparity Control. 
L. Gultchin, S. Guo, A. Malek, S. Chiappa, 
R. Silva, 2022.

Causal Decision 
Making



Optimized Policies under Fairness 
Constraints Goal

We would like to be fair with respect to desirable 
downstream outcomes, such as repayment or 
academic and economic success, and not just the 
very allocation of the action

We are not aiming to match a distribution of 
historical outcomes but to optimize a future 
expected utility         

Design a new decision making system that specifies 
how to select actions D that maximize downstream 
outcome Y subject to some fairness constraints 

A

YD

 Sensitive
Attribute

Action Outcome

X

 Covariates

Granting Loans/Offering College Admission Examples 

Policy parametrized by 

Extended view wrt designing fair prediction systems

Distinguish between our choice of policy or action 
allocation (D), and the downstream effect we truly 
aim for (Y)



Optimized Policies under Fairness 
Constraints Setting

● A and X are allowed to be associated and 
potentially directly influence Y 

● D can only indirectly control this influence

This setting formalizes a situation in which 
control for association of A and Y can only be 
achieved to some extent through a predefined 
set of available actions, i.e., a given action 
space. The level to which we can minimize such 
unfair impact therefore depends on the choice of 
the action space

A

YD

 Sensitive
Attribute

Action Outcome

X

 Covariates

Policy parametrized by 

Company looking to change its outreach 
campaign to mitigate imbalances in the 
demographics A and potentially associated level 
of experience X of job applicants Y 

The company cannot control factors such as 
cultural preference among applicants for industry 
sectors, but can induce modifications such as 
focusing recruiting efforts in events organized by 
minority groups in relevant conferences, thus 
optimizing for the things we can control        

Outreach Campaign Example



Optimized Policies under Fairness 
Constraints Setting

A

YD

 Sensitive
Attribute

Action Outcome

X

 Covariates

Policy parametrized by 

● Observational-data regime: learn optimized 
policy based on historical data collected 
using a baseline policy      , representing the 
action allocation that was in place during the 
collection of the data, i.e. the "status-quo" 
pre-optimization. 
Reflects considerations such as the cost, 
ethical constraints, or difficulty of collecting 
interventional data.



Optimized Policies under Fairness 
Constraints Formalization

Find policy                                               that maximizes 
utility               while controlling for disparity 

A

YD

 Sensitive
Attribute

Action Outcome

X

 Covariates

Policy parametrized by 

Remove influence of A on              as much as 
possible what we can control: the allocation of D as 
determined by                         . 

Moderation Breaking Constraint

Express a possible modulation of the effect of 
the action on the outcome by the sensitive 
attribute via the decomposition 



Optimized Policies under Fairness 
Constraints

g h

+NNY

f

a x d

g h

+NNY

f

a x

Teal blocks: parameter layers 
Light green blocks: fixed 
parameters. 
Purple diamonds: additive gates

Model                    using a 
structured neural network that 
separates into the three 
components reflecting the 
decomposition 

Phase I
Learn parameters of  NNY using 

Phase II

Model                                    
using a MLP neural network 

Learn parameters of             to learn the objective with  

Objective



The end and 
thank you


