	Tuesday 23 rd of August	Wednesday 24 th of August	Thursday 25 th of August	Friday 26 th of August
10:00-11:30	Smith (Warwick) Customized Causation for Bayesian Decision Analysis: Using graphs to merge expert judgments and high dimensional data together to support decision making Pt1	Chiappa (DeepMind) Causal inference to capture and alleviate bias in recent machine learning methods and applications Pt1	Smith (Warwick) Customized Causation for Bayesian Decision Analysis: Using graphs to merge expert judgments and high dimensional data together to support decision making Pt2	Chiappa (DeepMind) Causal inference to capture and alleviate bias in recent machine learning methods and applications Pt2
11:30-12:00	Coffee	Coffee	Coffee	Coffee
12:00-13:30	Syrgkanis (Microsoft Research) Econometrics and Machine Learning through the lens of Neyman Ortho Pt1	12:00-12:20 Loftus (LSE)Intersectional fairness12:20-12:40 Gkatzionis (Bristol)A characterization of collider bias	12:00-12:50 Mniestris (Ionian) About Electronic Music 12:50-13:10 Caron (UCL) Interpretability, Regularization	Syrgkanis (Microsoft Research) Econometrics and Machine Learning through the lens of Neyman Ortho Pt2
		12:40-13:00 Elvira (Edinburgh) Causal graph discovery in state-space models	and Uncertainty Quantification in Causal Learning	
		13:00-13:20 Aglietti (DeepMind) Constrained Causal Bayesian Optimization	13:10-13:30 Yu (Imperial) Bayesian doubly robust causal inference via loss functions	
13:30-14:40	Lunch	Lunch	Lunch	Lunch
14:40-16:00	Lehmann (UCL) Neural score matching for high- dimensional causal inference	Samartsidis (Cambridge) Nowcasting covid deaths by age and region	Livingstone (UCL) Adaptive MCMC methods for Bayesian Variable Selection	Chiavenna (Bocconi) Counterfactual estimates of pneumococcal disease incidence in England after vaccine introduction
	Alexopoulos (Cambridge) A Bayesian multivariate factor analysis model for causal inference using time-series observational data on mixed outcomes	Baguelin (Imperial) Real time monitoring and modelling of the COVID 19 pandemic in the UK	Politis (UCSD) Model-free Bootstrap and Conformal Prediction in Regression	Acharki (Ecole Polytechnique) Heterogeneous Treatment Effects Estimation: When Machine Learning meets multiple treatments regime
	Dravucz (Warwick) Jointly Learning Consistent Causal Abstraction Over Multiple Interventional Distributions	Nyberg (Cambridge) SARS-CoV-2 variant severity in England	Godsill (Cambridge) Simulation and inference for SDEs driven by Generalised Hyperbolic processes	Papageorgiou (Cambridge) Modelling and inference for time series using Bayesian Context Trees
	Ray (Imperial) Semiparametric Bayesian causal inference using Gaussian process priors	Kirwan (Cambridge) Sensitivity of an HIV back-calculation model to counterfactual COVID-19 lockdown assumptions	Stumpf (Warwick) Exact Bayesian Inference for Markov Switching Diffusions	Dhir (Turing) Active identification planning