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MCMC and variance considerations

MCMC framework

Let

π(·) probability measure on (X, B)

F : X → R function of interest

π(F ) := Eπ[F (X )] :=
∫

Fdπ the quantity to be estimated

In the MCMC setting, we have

(Xn) Markov chain on X, with:

P transition kernel
π stationary probability measure

π(F ) is estimated by the ergodic average:

µn(F ) =
1

n

n∑
i=1

F (Xi )
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MCMC and variance considerations

Main Theorems for Markov Chains

Ergodic Theorem, for Ergodic Markov Chains and appropriate F ,
(π(|F |) < ∞) ,

lim
n→∞

µn(F ) = π(F ), a.s.

Central Limit Theorem (CLT) for Markov Chains
Under appropriate additional conditions:

√
n[µn(F )− π(F )] =

1√
n

n∑
i=1

[F (Xi )− π(F )]
D−→ N(0, σ2

F )

where σ2
F , the asymptotic variance of F , is:

σ2
F := lim

n→∞
Varπ[

√
nµn(F )] =

∞∑
n=−∞

Covπ[F (X0), F (Xn)]
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MCMC and variance considerations

Approaches to variance reduction

Importance sampling

Antithetic sampling/variates

Control variates

Rao-Blackwellization
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

Let

π(·) target probability measure on (X, B)

F : X → R function of interest

π(F ) := Eπ[F (X )] :=
∫

Fdπ the quantity to be estimated

(Xn) Markov chain on X, with:

P transition kernel
π stationary probability measure

further:

function U : X → R, with π(U) = 0

modified function Fθ = F − θU

modified estimator µn(Fθ) = µn(F )− θµn(U)
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

All the ”regularity” properties of F also hold for Fθ:

lim
n→∞

µn(Fθ) := lim
n→∞

1

n

n∑
i=1

Fθ(Xi ) = π(Fθ) = π(F ), a.s.

and
√

n[µn(Fθ)− π(F )] =
1√
n

n∑
i=1

[Fθ(Xi )− π(F )]
D−→ N(0, σ2

Fθ
)

Research interest: Find appropriate

function U

parameter θ

so as to significantly reduce (σ2
Fθ

) compared to (σ2
F ).
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U = G − PG , for arbitrary G , with π(|G |) < ∞

PG (x) = E
[
G (X1)|X0 = x

]
Then,

Which U? ⇒ Which G?
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Elaboration on variance of the modified estimator (σ2
Fθ

)

An alternative expression of the variance in the CLT is:

σ2
F = π

(
F̂ 2 − (PF̂ )2

)
F̂ : the solution of Poisson’s equation:

PF̂ − F̂ = −F + π(F )

Analogously
σ2

θ := σ2
Fθ

= π
(
F̂ 2

θ − (PF̂θ)
2
)
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U = G − PG , for arbitrary G , with π(|G |) < ∞

PG (x) = E
[
G (X1)|X0 = x

]
Then,

Which U? ⇒ Which G?

Findings from σ2
θ elaboration

If G = F̂ ⇒ (σ2
Fθ

) = 0

The higher the correlation between F ,U the smaller the (σ2
Fθ

)

Guidelines for choosing G

as close as possible to F̂

leading to U = G − PG highly correlated to F
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Optimal value of parameter θ

It can be derived that:
σ2

θ = . . .

quadratic function with respect to θ.

Thus,

θ∗ =
π
(
F̂G − (PF̂ )(PG )

)
π
(
G 2 − (PG )2

)
Alternative expression (proved by Dellaportas and Kontoyiannis, 2008)
with practical usefulness:

θ∗ =
π
(
F̂G − (PF̂ )(PG )

)
Eπ

[
(G (X1)− PG (X0))

2
]
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Theoretical framework for Control Variates to MCMC Optimal results for reversible chains

Optimal empirical estimate of θ∗ for reversible chains

If the chain (Xn) is reversible, Dellaportas and Kontoyiannis (2008) prove:

Theorem

π
(
F̂G − (PF̂ )(PG )

)
= π ((F − π(F ))(G + PG ))

So, the optimal value of θ (for reversible chains) can be expressed as

θ∗rev =
π ((F − π(F ))(G + PG ))

Eπ

[
(G (X1)− PG (X0))

2
]

In this case, θ can be adaptively estimated as

θ̂n =
µn(F (G + PG ))− µn(F )µn(G + PG )

1
n

∑n
i=1[G (Xi )− PG (Xi−1)]2
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Theoretical framework for Control Variates to MCMC Extension to multiple control variates

Extension to multiple control variates

Let’s further assume:

k functions Uj(= Gj − PGj) : X → R, with π(Uj) = 0

Notation with vectors:

G =


G1

G2

. . .
Gk

 : X → Rk U =


U1

U2

. . .
Uk

 : X → Rk θ =


θ1

θ2

. . .
θk

 ∈ Rk

modified function
Fθ = F − 〈θ, U〉 = F −

∑k
j=1 θjUj
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Theoretical framework for Control Variates to MCMC Extension to multiple control variates

Extension to multiple control variates

Analogously to the one-dimensional case, we have that:

σ2
Fθ

= σ2
F − 2π

(
F̂ 〈θ, G 〉 − PF̂ 〈θ, PG 〉

)
+ π

(
〈θ, G 〉2 − 〈θ, PG 〉2

)
⇓

θ∗ = K (G )−1π
(
F̂G − (PF̂ )(PG )

)
where
K (G )ij = Eπ

[(
Gi (X1)− PGi (X0)

)(
Gj(X1)− PGi (X0)

)]
For reversible chains, Dellaportas and Kontoyiannis (2008) prove:

Theorem

θ∗ = K (G )−1π
(
(F − π(F )) (G + PG )

)
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Theoretical framework for Control Variates to MCMC Control variates for MCMC algorithms

Use of control variates for the reduction of variance of
MCMC algorithms

Control Variate methodology directly applicable to reversible MCMC algorithms

Derivation of µn(Fθ) straightforward. Quantities needed:

F (Xi ), Gj(Xi ) for i = 1, . . . , n, j = 1, . . . , k: OK, readily available

BUT PGj(Xi )?
This issue may require further attention...

Most popular MCMC algorithms:

Gibbs sampler
Treated in detail in Dellaportas and Kontoyiannis (2008)

Metropolis-Hastings algorithm
Random Walk (RW-MH)
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Control variates for Random-Walk Metropolis-Hastings algorithms Introduction to the algorithm

Setting of RW-MH

Assume the following:

Our target distribution is a d-dimensional probability density π(x)

The ”Random Walk Metropolis-Hastings” (RW-MH) algorithm used
for the simulation of π can be described as:

Assume initial value X0 and Y0 = X0 + ∆0, where ∆0 ∼ P∆ (d-variate
symmetrical distribution)
At step t + 1, given Xt = xt , Yt = yt = xt + ∆t , we have that:

Xt+1 =

{
xt + ∆t = yt w.pr. ρ(xt , yt)
xt w.pr. 1− ρ(xt , yt)

where

ρ(xt , yt)=min

{
1,

π(yt)

π(xt)

}
we simulate ∆t+1 ∼ P∆
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X )

Use of control variates for RW-MH - PG (x) elaboration

PG (x) = EX1

[
G (X1) | X0 = x

]

= EY0

{
EX1

[
G (X1) | X0 = x ,Y0 = y

]}
= EY0 {ρ (x , y) · G (y) + (1− ρ (x , y))G (x)}

= G (x) + EY0 {ρ(x , y) · (G (y)− G (x))}

i.e.

PG (x) = G (x) + EY0 {ρ(x , y) · (G (y)− G (x))} , where Y0 ∼ q(y | x)

Several approaches may be considered for the estimation of PG (x).

Monte Carlo estimation based on P∆

Importance sampling based on the proposed values y
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Application of control variates to RW-MH algorithms

1 MCMC and variance considerations

2 Theoretical framework for Control Variates to MCMC

3 Control variates for Random-Walk Metropolis-Hastings algorithms

4 Application of control variates to RW-MH algorithms
The simple case of Univariate Normal
Case-study of a survival analysis
Poisson generation
Heavy tailed distributions
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -
Univariate Normal

Target : N
(
0, σ2

t = 10
)

Proposal : N
(
0, σ2

pr = 160
)

We use F (x) = x and G (x) = x

Framework for the evaluation of variance reduction:

Optimal value of θ based on Dellaportas and Kontoyiannis (2008)
approach for reversible chains
Terms of PG (x) assessed using Monte Carlo estimates from the
proposal distribution
T = 100 repetitions for each simulation scenario.
”Variance Reduction Factors”:

VRF =
S2

µn(F )

S2
µn(Fθ)
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -
Univariate Normal

Figure: Ergodic means for different realizations with n = 100, 000 and nPG = 50
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -
Univariate Normal

Table: VRF’s in Univariate Normal case - Normal proposal - Simplest G (x) = x

Length of Markov chain (number of iterations n)
nPG 1,000 2,000 5,000 10,000 20,000 50,000 100,000
5 7.25 7.06 5.61 9.12 8.96 7.64 8.60

10 11.56 9.54 8.46 14.35 10.79 15.33 12.26

20 13.05 22.19 15.94 30.20 20.64 19.12 26.02

50 23.31 40.45 44.01 35.85 45.65 39.51 34.95

100 36.06 34.68 43.31 60.45 49.34 40.57 54.33

200 41.55 56.49 32.98 42.09 57.14 78.11 61.99

500 36.52 62.54 70.50 50.65 55.28 55.97 50.40

1,000 32.30 41.40 66.05 68.69 50.00 64.52 96.26
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -
Univariate Normal

Study of the effect of G functions

1. G (x) = x

2. G1(x) = x , G2(x) = x2

· · ·
k. G1(x) = x , G2(x) = x2, · · · , Gk(x) = xk

· · ·
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Application of control variates to RW-MH algorithms -
Univariate Normal

Figure: Plot of VRF by the order of polynomial G functions
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Application of control variates to RW-MH algorithms -
Univariate Normal

Table: VRF’s in Univariate Normal case - Normal proposal - Polynomial G
functions of order 4, i.e. G1(x) = x , G2(x) = x2, G3(x) = x3, G4(x) = x4

Length of Markov chain (number of iterations n)
nPG 1,000 2,000 5,000 10,000 20,000 50,000 100,000
5 6.47 5.94 5.72 8.76 9.34 8.46 8.19

10 10.40 9.33 9.74 14.27 12.18 14.82 11.71

20 9.89 21.51 16.15 38.03 27.55 22.25 30.87

50 19.51 37.58 64.26 29.73 51.58 52.28 49.82

100 25.83 20.75 59.09 68.35 66.50 60.89 71.72

200 15.15 42.49 37.94 69.41 80.34 152.59 106.34

500 17.82 31.58 78.46 78.33 82.35 100.31 112.40

1,000 16.68 23.61 92.50 114.56 109.26 127.89 180.37
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Application of control variates to RW-MH algorithms -
Univariate Normal

Figure: Plot of VRF by different acceptance rates
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Application of control variates to RW-MH algorithms -
Univariate Normal

Study of the effect of the proposal distribution

Table: VRF’s in Univariate Normal case - T-student proposal (3 df’s, variance
160) - Simplest function G (x) = x

Length of Markov chain (number of iterations n)
nPG 1,000 2,000 5,000 10,000 20,000 50,000
5 6.73 7.16 10.25 8.59 8.64 5.69

10 10.69 8.70 12.45 13.68 10.39 15.76

20 17.68 28.25 21.26 20.21 19.98 27.64

50 22.64 36.28 37.14 44.02 48.17 52.30

100 28.88 48.08 30.06 42.89 54.28 53.40

200 51.35 50.93 52.94 54.31 84.32 46.03

500 55.65 63.28 60.25 86.49 68.40 57.05
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Application of control variates to RW-MH algorithms -
Univariate Normal

Study of the effect of the proposal distribution

Table: VRF’s in Univariate Normal case - Uniform proposal (−5.5 · σt ,+5.5 · σt)
- Simplest function G (x) = x

Length of Markov chain (number of iterations n)
nPG 1,000 2,000 5,000 10,000 20,000 50,000
5 5.52 5.81 8.21 5.38 5.90 7.25

10 7.94 8.77 11.11 10.71 8.59 8.72

20 11.08 18.53 19.59 15.27 20.23 17.35

50 27.22 26.33 18.14 17.94 17.35 21.84

100 19.74 26.00 19.72 15.23 18.58 21.51

200 18.14 22.50 23.82 26.99 30.12 22.76

500 18.84 18.61 18.36 26.25 25.85 20.14
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Application of control variates to RW-MH algorithms -
Survival analysis

Source: Albert, J. (2007). Bayesian Computation with R, Springer.

Data:
Lifetime of a number of patients some of which had a heart transplant.

Model assumptions:

Non-transplant patients: Xi ∼ Exponential with mean 1/η

Transplant patients: Xi ∼ Exponential with mean 1/(τη)

Parameter η ∼ Gamma(p, λ), i.e. f (η) = λp

Γ(p)η
p−1exp(−λη)

Unknown parameter vector: (τ, λ, p) (all positive)

Notation:
N non-transplant patients:

n: died

N − n: censored

xi survival time

.

M transplant patients:

m: died

M −m: censored

yi time to transplant

zi survival time
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Application of control variates to RW-MH algorithms -
Survival analysis

Likelihood:

L(τ, λ, p) =∏n
i=1

pλp

(λ+xi )p+1

∏N
i=n+1

(
λ

λ+xi

)p ∏m
j=1

τpλp

(λ+yj+τzj )p+1

∏M
j=m+1

(
λ

λ+yj+τzj

)p

Prior distribution of parameters: g(τ, λ, p) ∝ 1

Posterior distribution of parameters: g(τ, λ, p|data) ∝ L(τ, λ, p)

Transformation

φ = (φ1 := logτ, φ2 := logλ, φ3 := logp, )

g(φ|data) ∝ L
(
eφ1 , eφ2 , eφ3

)
· e

∑3
i=1 φi
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Application of control variates to RW-MH algorithms -
Survival analysis

Table: Function F (τ, λ, p) = log(τ) = φ1, n = 10, 000, nPG = 50

Form of G A.

 G1 = φ1

G2 = φ2

G3 = φ3

 B.

 G1 = φ2
1

G2 = φ2
2

G3 = φ2
3

 C.

[
G1 = φ1

G2 = φ2
1

]
D.

[
G1 = φ1

G2 = eφ1

]
VRF 29.9 1.4 41.6 30.7

Form of G E.


G1 = φ1

G2 = φ2
1

G3 = φ2

G4 = φ2
2

G5 = φ3

G6 = φ2
3

 F.


G1 = φ1

G2 = φ2
1

G3 = φ2

G4 = φ2
2

 G.


G1 = φ1

G2 = φ2
1

G3 = φ3

G4 = φ2
3


VRF 42.3 37.4 35.4
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Application of control variates to RW-MH algorithms -
Survival analysis

Figure: Plot of VRF by n, function F (τ, λ, p) = log(τ) = φ1,
G =

[
G1 = φ1,G2 = φ2

1

]
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Application of control variates to RW-MH algorithms -
Poisson generation

Setting:

Target distribution π: Poisson(λ),

Proposal: discrete bell-shaped:

PM
∆ (∆ = δ) =

M + 1− |δ|
M(M + 1)

, δ∈{−M,−M+1,...,−1,+1,...,M−1,M}

Inference is focused on:
F (λ) =

√
λ

To enhance estimation of π(F ):

FG ,θ(λ) = F (λ)− θ · U(λ)

where U = G − PG
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Application of control variates to RW-MH algorithms -
Poisson generation

The form of function G used here is

G (λ) = λ

In the present setting:

PG (x) = Eπ [G (λt+1)|λt = x ]
= . . .

= x +
∑k

j=−k, 6=0

[
Pk

∆(j) · j · ρ(x , x + j)
]

The terms of PG (x) are assessed using two approaches:

(i) Using the exact formula
(ii) Using Monte Carlo estimates from Pk

∆ distribution
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Application of control variates to RW-MH algorithms -
Poisson generation

Table: VRF’s for F (x) =
√

x , G (x) = x for n = 5, 000 (analytic formula for
PG (x))

Proposal distribution PM
∆

Target P(λ) 1 10 15 20 30 40 70

λ = 5 34.7 42.2 43.3 27.1 - - -
λ = 10 50.8 - 89.6 83.1 64.9 - -
λ = 100 10.2 23.9 - - - 40.0 174.1
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Application of control variates to RW-MH algorithms -
Heavy tailed distributions

Source: Jarner, S.F. and Roberts, G.O. (2007). Convergence of Heavy-tailed Monte Carlo

Markov Chain Algorithms. Scandinavian Journal of Statistics. 34, 781-815.

Main result for RW-MH:
Heavy tailed proposals lead to higher rates of convergence

Focus:
Polynomially ergodic Markov chains

For polynomial target distributions:
they derive polynomial rates of convergence
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Application of control variates to RW-MH algorithms -
Heavy tailed distributions

Table: Existence of central limit theorems for RW-MH algorithm (from Jarner
and Roberts, 2007)

Target distribution
Proposal distr. t(2.5) t(3) t(4) t(5) t(6) t(7)

Uniform L C C C
Normal L C C C
Cauchy L C C C C
t(0.5) L L C C C C

C: CLT holds for |x |, L: CLT holds for |x |s , s < 1
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Application of control variates to RW-MH algorithms -
Heavy tailed distributions

Table: VRF’s for F (x) = |x |, with Gi = x i , i = 1, 2, 3 (n = 200, 000, nPG = 50)

Target distribution
Proposal distr. t(2.5) t(3) t(4) t(5) t(6) t(7)

Uniform 8.95 5.79 3.78 3.17 3.24 2.28
Normal 0.09 4.54 4.08 2.73 2.72 2.80
Cauchy 3.54 3.95 3.46 3.75 3.83 4.93
t(0.5) 3.47 3.27 2.89 3.61 6.06 9.28
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Summary and Further Research

Summary

A solid methodological framework has been provided for the
development and use of control variates in MCMC

For given G function, consistent estimates for optimal coefficients θ
are defined

Further research

Approaches for elicitation of G functions and decision on k

Techniques for more efficient derivation of PG (x)

Extension to Reversible-Jump MCMC algorithms

Main reference:

Dellaportas, P. and Kontoyiannis, I. (2008). Control Variates for Reversible MCMC

samplers. Submitted to JRSS(Series B)
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Summary and Further Research

Thank you for listening :)
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