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MCMC and variance considerations

0 MCMC and variance considerations




MCMC and variance considerations
MCMC framework

Let
e 7(-) probability measure on (X, B)
@ F : X — R function of interest

o m(F) := E;[F(X)] := | Fdm the quantity to be estimated

In the MCMC setting, we have
e (X,) Markov chain on X, with:

e P transition kernel
e 7 stationary probability measure
e m(F) is estimated by the ergodic average:

ol F) = 7 3" F(X)
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MCMC and variance considerations
Main Theorems for Markov Chains

o Ergodic Theorem, for Ergodic Markov Chains and appropriate F,
(w(IF]) < o0),
lim pn(F)=n(F), as.

n—oo

e Central Limit Theorem (CLT) for Markov Chains
Under appropriate additional conditions:

Vnlpn(F) = m( WZ[F (F)] = N(0,0%)

where 0,2_-, the asymptotic variance of F, is:

oF = lim Vare[V/npn(F)] = > Cove[F(Xo), F(Xy)]

n=—oo
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MCMC and variance considerations
Approaches to variance reduction

Importance sampling

Antithetic sampling/variates

o Control variates

@ Rao-Blackwellization
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Theoretical framework for Control Variates to MCMC

© Theoretical framework for Control Variates to MCMC
@ Introduction of control variates to Markov chains
@ Optimal results for reversible chains
@ Extension to multiple control variates
@ Control variates for MCMC algorithms
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

Let

e 7(-) target probability measure on (X,B)

o F : X — R function of interest

o m(F) := E;[F(X)] := | Fdm the quantity to be estimated
e (X,) Markov chain on X, with:

e P transition kernel
e 7 stationary probability measure
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

Let

e 7(-) target probability measure on (X,B)

o F : X — R function of interest

o m(F) := E;[F(X)] := | Fdm the quantity to be estimated
e (X,) Markov chain on X, with:

e P transition kernel
e 7 stationary probability measure

further:
e function U : X — R, with 7(U) =0
@ modified function Fp = F — U
e modified estimator pn(Fp) = pn(F) — Oun(U)
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

All the "regularity” properties of F also hold for Fy:

: L
Jim jun(Fo) := lim = ; Fo(X;) = n(Fg) = n(F), as.

and

Vnlua(Fa) - Z[Fe (F)] 2 N(0.0%,)

0 August 29, 2009 9 / 42



Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

All the "regularity” properties of F also hold for Fy:

: L
Jim jun(Fo) := lim = > Fo(Xi) =n(Fo) =7(F), as.

i=1
and

Vnlpn(Fo) — (F)] = % > [Fa(X)) = 7(F)] = N(0,02,)
i=1

Research interest:
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

All the "regularity” properties of F also hold for Fy:

: L
Jim jun(Fo) := lim = > Fo(Xi) =n(Fo) =7(F), as.

i=1
and

Vnlpn(Fo) — (F)] = % > [Fa(X)) = 7(F)] = N(0,02,)
i=1

Research interest: Find appropriate
@ function U
@ parameter 6

so as to significantly reduce (a%@) compared to (02).
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U= G - PG, for arbitrary G, with 7(|G]|) < 0o
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Theoretical framework for Control Variates to MCMC

Choice of function U

In this setting we use:

U=G - PG,

PG(x) = E[G(X1)|Xo = x]

Introduction of control variates to Markov chains

for arbitrary G, with 7(|G]|) < 0o
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U= G - PG, for arbitrary G, with 7(|G]|) < 0o

PG(x) = E[G(X1)|Xo = x]

Then,
Which U? = Which G?
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Elaboration on variance of the modified estimator (07 )

An alternative expression of the variance in the CLT is:
o2 = Tr(IA-_2 — (P/A-_)2)

F: the solution of Poisson’s equation:

PF —F=—F 4+ n(F)

Analogously

0 August 29, 2009
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U=G - PG, for arbitrary G, with 7(]G|) < oo

PG(x) = E[G(X1)|Xo = x|

Then,
Which U? = Which G?

Findings from 03 elaboration
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U=G - PG, for arbitrary G, with 7(]G|) < oo

PG(x) = E[G(X1)|Xo = x|

Then,
Which U? = Which G?

Findings from 03 elaboration
_F 2y _
o lf G=F=(0f)=0
@ The higher the correlation between F,U the smaller the (af_—e)

Guidelines for choosing G
@ as close as possible to F
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

U=G - PG, for arbitrary G, with 7(]G|) < oo

PG(x) = E[G(X1)|Xo = x|

Then,
Which U? = Which G?

Findings from 03 elaboration
_F 2y _
o lf G=F=(0f)=0
@ The higher the correlation between F,U the smaller the (af_—e)

Guidelines for choosing G
@ as close as possible to F
@ leading to U = G — PG highly correlated to F
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Optimal value of parameter 6

It can be derived that:
2 _
0'0 = ...

quadratic function with respect to 6.
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Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Optimal value of parameter 6

It can be derived that:
2 _
0'0 = ...

quadratic function with respect to 6.

Thus,
g _ T(FG — (PF)(PG))
(G2 — (PG)?)

Alternative expression (proved by Dellaportas and Kontoyiannis, 2008)
with practical usefulness:

m(FG — (PF)(PG))

0" =
Ex |(6(X1) - PG(X0)Y?|
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Theoretical framework for Control Variates to MCMC Optimal results for reversible chains

Optimal empirical estimate of 6* for reversible chains

If the chain (X,) is reversible, Dellaportas and Kontoyiannis (2008) prove:

7 (FG = (PF)(PG)) = 7 ((F — w(F))(G + PG))
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Theoretical framework for Control Variates to MCMC Optimal results for reversible chains

Optimal empirical estimate of 6* for reversible chains

If the chain (X,) is reversible, Dellaportas and Kontoyiannis (2008) prove:

7 (FG = (PF)(PG)) = 7 ((F — w(F))(G + PG))

So, the optimal value of 6 (for reversible chains) can be expressed as

g~ ™((F=n(F))(G + PG))

E. [(6(X) - PG(x0))?]

rev
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Theoretical framework for Control Variates to MCMC Optimal results for reversible chains

Optimal empirical estimate of 6* for reversible chains

If the chain (X,) is reversible, Dellaportas and Kontoyiannis (2008) prove:

7 (FG = (PF)(PG)) = 7 ((F — w(F))(G + PG))

So, the optimal value of 6 (for reversible chains) can be expressed as

g~ ™((F=n(F))(G + PG))

E. [(6(X) - PG(x0))?]

rev

In this case, 6 can be adaptively estimated as

§ — Ha(F(G+PG)) — pn(F)n(G + PG)
’ IS 1G(X) — PG(Xi1)2
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Theoretical framework for Control Variates to MCMC Extension to multiple control variates

Extension to multiple control variates

Let's further assume:

@ k functions Uj(= G; — PG;) : X — R, with 7(U;) =0

@ Notation with vectors:

Gl Ul
G = G2 X >R U= UV | x . ge
Gk Uk

@ modified function
Fo=F—(0,U)=F -1 0;U

August 29, 2009
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Theoretical framework for Control Variates to MCMC Extension to multiple control variates

Extension to multiple control variates

Analogously to the one-dimensional case, we have that:

o2, = ot —2n(F(0, G) — PF(0,PG)) + m((0, G)* — (6, PG)?)
J
0" = K(G) n (ﬁc - (Pﬁ)(PG))

where
K(G)ij = Ex[(Gi(X1) — PGi(X0)) (Gj(X1) — PGi(Xo))]

For reversible chains, Dellaportas and Kontoyiannis (2008) prove:

0* = K(G)'n((F — n(F))(G + PG))
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Theoretical framework for Control Variates to MCMC Control variates for MCMC algorithms

Use of control variates for the reduction of variance of

MCMC algorithms

Control Variate methodology directly applicable to reversible MCMC algorithms

Derivation of p,(Fy) straightforward. Quantities needed:
® F(X), Gj(Xi) fori=1,....,n j=1,...,k: OK, readily available

e BUT PG;j(X;)?
This issue may require further attention...

Most popular MCMC algorithms:

@ Gibbs sampler
Treated in detail in Dellaportas and Kontoyiannis (2008)

@ Metropolis-Hastings algorithm
Random Walk (RW-MH)
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Control variates for Random-Walk Metropolis-Hastings algorithms

© Control variates for Random-Walk Metropolis-Hastings algorithms
@ Introduction to the algorithm
e Elaboration on PG(X)
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Control variates for Random-Walk Metropolis-Hastings algorithms Introduction to the algorithm

Setting of RW-MH

Assume the following:

e Our target distribution is a d-dimensional probability density 7(x)
@ The "Random Walk Metropolis-Hastings” (RW-MH) algorithm used
for the simulation of 7 can be described as:

o Assume initial value Xy and Yy = Xy 4+ Ao, where Ag ~ Pa (d-variate
symmetrical distribution)

o Atstep t+1, given Xy = x¢, Y = yr = x¢ + A, we have that:

X — xe+ D=y w.pr. p(xe, yt)
@ At41 =
X w.pr. 1 — p(x¢, ¥¢)
where (%)
. T\ Yt
= 1
o y=min {1, 05}

o we simulate A1 ~ Pa
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X)

Use of control variates for RW-MH - PG(x) elaboration

PG(X) = EX1 [G (Xl) ’ Xo = X]
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X)

Use of control variates for RW-MH - PG(x) elaboration

PG(x) = Ex,[G(X1) | Xo =]
= Ev{Ex,[G (X1) | Xo = x, Yo = y]}
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X)

Use of control variates for RW-MH - PG(x) elaboration

PG(x) = Ex, [G(X1) | Xo = ]
= Evy {Ex, [G (X1) | Xo = x, Yo =]}
)

=Ev, {p(x,y)- G(y)+ (1= p(xy)) G (x)}
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X)

Use of control variates for RW-MH - PG(x) elaboration

PG(x) = Ex[G(X1)]|Xo=x]
= Ev{Ex,[G (X1) | Xo = x, Yo = y]}
= Ev, {p(x,¥) - G(y)+ (1 —p(x,y)) G(x)}
)
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X)

Use of control variates for RW-MH - PG(x) elaboration

PG(x) = Ex[G(X1)]|Xo=x]
= Ev{Ex,[G (X1) | Xo = x, Yo = y]}
= Ev, {p(x,¥) - G(y)+ (1 —p(x,y)) G(x)}
)

i.e.

PG(x) = G(x) + Ev, {p(x,y) - (G(y) — G(x))}, where Yo ~ q(y | x)
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Control variates for Random-Walk Metropolis-Hastings algorithms Elaboration on PG(X)

Use of control variates for RW-MH - PG(x) elaboration

PG(x) = Ex[G(X1)]|Xo=x]
= Ev{Ex,[G (X1) | Xo = x, Yo = y]}
= Ev, {p(x,¥) - G(y)+ (1 —p(x,y)) G(x)}
)

PG(x) = G(x) + Ev, {p(x,y) - (G(y) — G(x))}, where Yo ~ q(y | x)

Several approaches may be considered for the estimation of PG(x).

@ Monte Carlo estimation based on Pa

@ Importance sampling based on the proposed values y
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Application of control variates to RW-MH algorithms

@ Application of control variates to RW-MH algorithms
@ The simple case of Univariate Normal
@ Case-study of a survival analysis
@ Poisson generation
@ Heavy tailed distributions
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal
o Target : N (0,07 = 10)

e Proposal : N (0,02, = 160)
@ We use F(x) = x and G(x) = x
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal

o Target : N (0,07 = 10)

e Proposal : N (0,02, = 160)

@ We use F(x) = x and G(x) = x

@ Framework for the evaluation of variance reduction:

o Optimal value of 6 based on Dellaportas and Kontoyiannis (2008)
approach for reversible chains

o Terms of PG(x) assessed using Monte Carlo estimates from the
proposal distribution

e T =100 repetitions for each simulation scenario.

e "Variance Reduction Factors”:

2
kn(Fo)
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Application of control variates to RW-MH algorithms

Application of control variates to RW-MH algorithms -

Univariate Normal

The simple case of Univariate Normal
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Figure: Ergodic means for different realizations with n-= 100,000 and-npgs = 50
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal

Table: VRF's in Univariate Normal case - Normal proposal - Simplest G(x) = x

Length of Markov chain (number of iterations n)

npc | 1,000 2,000 5,000 10,000 20,000 50,000 100,000
5 725 7.06 561 9.12 8.96 7.64 8.60
10 11.56 9.54 8.46 14.35 10.79 15.33 12.26
20 13.05 2219 1594 30.20 20.64 19.12 26.02
50 23.31 4045 4401 35.85 45.65 39.51 34.95
100 | 36.06 34.68 4331 6045 4934  40.57 54.33
200 | 4155 56.49 3298 42.09 57.14 78.11 61.99
500 | 36.52 6254 70.50 50.65  55.28  55.97 50.40

1,000 | 32.30 41.40 66.05 68.69 50.00 64.52 96.26
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal

Study of the effect of G functions
1. G(x)=x
2. Gi(x) = x, Ga(x) = x?

k. Gi(x) = x, Ga(x) = x2, - -+, Gi(x) = x*
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -
Univariate Normal

WRF

P - s N & &
0 2 Eil E3 an i E
Pawer of the polynomial of G functions

Figure: Plot of VRF by the order of polynomial G functions
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal

Table: VRF's in Univariate Normal case - Normal proposal - Polynomial G
functions of order 4, i.e. Gi(x) = x, Ga(x) = x%, Gs3(x) = x3, G4(x) = x*

Length of Markov chain (number of iterations n)

npc | 1,000 2,000 5,000 10,000 20,000 50,000 100,000
5 6.47 594 572 8.76 9.34 8.46 8.19
10 1040 933 9.74 1427 12.18  14.82 11.71
20 9.89 2151 16.15 38.03 2755 2225 30.87
50 1951 3758 6426 29.73 5158  52.28 49.82
100 | 2583 20.75 59.09 6835 66.50  60.89 71.72
200 | 15.15 4249 3794 69.41 80.34 15259 106.34
500 | 17.82 3158 78.46 7833 8235 10031  112.40

1,000 | 16.68 23.61 9250 11456 109.26 -127.89 - 180.37
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal

Study of the effect of the proposal distribution

Table: VRF's in Univariate Normal case - T-student proposal (3 df’s, variance
160) - Simplest function G(x) = x

Length of Markov chain (number of iterations n)
npg | 1,000 2,000 5,000 10,000 20,000 50,000
5 6.73 7.16  10.25 8.59 8.64 5.69
10 | 10.69 8.70 1245 13.68 10.39 15.76
20 | 17.68 28.25 21.26 20.21 19.98 27.64
50 | 22.64 36.28 37.14 44.02 48.17 52.30
100 | 28.88 48.08 30.06 42.89 54.28 53.40
200 | 51.35 50.93 52.94 5431 84.32 46.03
500 | 55.65 63.28 60.25 86.49 68.40 57.05
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Application of control variates to RW-MH algorithms The simple case of Univariate Normal

Application of control variates to RW-MH algorithms -

Univariate Normal

Study of the effect of the proposal distribution

Table: VRF's in Univariate Normal case - Uniform proposal (—=5.5 - o¢, +5.5 - 0¢)
- Simplest function G(x) = x

Length of Markov chain (number of iterations n)
npg | 1,000 2,000 5,000 10,000 20,000 50,000
5 5.562 5.81 8.21 5.38 5.90 7.25
10 7.94 8.77r 11.11 10.71 8.59 8.72
20 | 11.08 1853 19.59 15.27 20.23 17.35
50 | 27.22 2633 18.14 17.94 17.35 21.84
100 | 19.74 26.00 19.72 1523 18.58 21.51
200 | 18.14 2250 23.82 26.99 30.12 22.76
500 | 18.84 18.61 18.36 26.25 25.85 20.14
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Application of control variates to RW-MH algorithms Case-study of a survival analysis

Application of control variates to RW-MH algorithms -

Survival analysis

Source: Albert, J. (2007). Bayesian Computation with R, Springer.

Data:
Lifetime of a number of patients some of which had a heart transplant.

Model assumptions:
@ Non-transplant patients: X; ~ Exponential with mean 1/
@ Transplant patients: X; ~ Exponential with mean 1/(77)
@ Parameter n ~ Gamma(p, \), i.e. f(n) = %np_lexp(—)\n)

@ Unknown parameter vector: (7, A, p) (all positive)

Notation:
N non-transplant patients: M transplant patients:
@ n: died @ m: died
@ N — n: censored @ M — m: censored
@ Xx; survival time @ y; time to transplant

@ z; survival time
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Application of control variates to RW-MH algorithms Case-study of a survival analysis

Application of control variates to RW-MH algorithms -

Survival analysis

Likelihood:
L(m, A, p) =
n PAP N A Ptm TPAP M by p
[T%: ooy Hiznia (m) IIi%: ozt izma (m)
Prior distribution of parameters: g(7, A, p) o 1
Posterior distribution of parameters: g(7, A, p|data) o< L(7, A, p)

Transformation
¢ = (¢1 := logT, pa := log\, ¢3 = logp,)
g(¢ldata) ox L (%1, 6%, e07) - eXia
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Application of control variates to RW-MH algorithms

Case-study of a survival analysis

Application of control variates to RW-MH algorithms -

Survival analysis

Table: Function F(7, A, p) = log(T) = ¢1, n = 10,000, npg = 50

GL=¢ [ G =¢7 ] _ _
Form of G Gy = & B. | G =¢3 C. [ gljzi ] D. { GGl:j;I
Gs = b | G = | 2 = @1 2 =
VRF 29.9 1.4 41.6 30.7
Gl =¢
Gzqui G =¢1 G =
Gz = ¢ G =7 G = ¢3
F f .
orm of G Ge = &2 Gy = G Gs = 65
Gs = ¢3 Gis = ¢5 Gy = ¢3
Go = ¢3
VRF 42.3 37.4 35.4
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Case-study of a survival analysis

Application of control variates to RW-MH algorithms
Application of control variates to RW-MH algorithms -
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Figure: Plot of VRF by n, function F(7, A\, p) = log(7)-= ¢
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Application of control variates to RW-MH algorithms Poisson generation

Application of control variates to RW-MH algorithms

Poisson generation

Setting:
e Target distribution 7: Poisson()),

@ Proposal: discrete bell-shaped:

M+1— 5]

PE(A=0)= M(M +1)°

Se{—M,—M+1,...,—1,+1,...,M—1,M}

@ Inference is focused on:

FO\) = VA

@ To enhance estimation of 7(F):
FCO9(N\) = F(\) —6- U\
where U = G — PG
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Application of control variates to RW-MH algorithms Poisson generation

Application of control variates to RW-MH algorithms -

Poisson generation

@ The form of function G used here is
G(A\) = A
@ In the present setting:

PG(x) = Ex[G(Atr1)[Ae = X]

=X+ Zlf:—k,fo [PK() - J - px,x+))]
@ The terms of PG(x) are assessed using two approaches:

(i) Using the exact formula
(i) Using Monte Carlo estimates from PX distribution
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Application of control variates to RW-MH algorithms -

Poisson generation

Table: VRF's for F(x) = /x, G(x) = x for n = 5,000 (analytic formula for
PG(x))

Proposal distribution PY
Target P(\) 1 10 15 20 30 40 70

A=5 347 422 433 271 - - -
A =10 50.8 - 89.6 83.1 64.9 - -
A =100 10.2 239 - - - 40.0 1741
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Application of control variates to RW-MH algorithms -

Heavy tailed distributions

Source: Jarner, S.F. and Roberts, G.O. (2007). Convergence of Heavy-tailed Monte Carlo
Markov Chain Algorithms. Scandinavian Journal of Statistics. 34, 781-815.

Main result for RW-MH:
Heavy tailed proposals lead to higher rates of convergence

Focus:
Polynomially ergodic Markov chains

For polynomial target distributions:
they derive polynomial rates of convergence

0 August 29, 2009 38 / 42



Application of control variates to RW-MH algorithms Heavy tailed distributions

Application of control variates to RW-MH algorithms -

Heavy tailed distributions

Table: Existence of central limit theorems for RW-MH algorithm (from Jarner
and Roberts, 2007)

Target distribution

Proposal distr.  t(2.5) t(3) t(4) t(5) ¢t(6) ¢(7)
Uniform L C C C
Normal L C C C
Cauchy L C C C C
t(0.5) L L C C C C

C: CLT holds for |x|, L: CLT holds for |x|*, s < 1
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Application of control variates to RW-MH algorithms -

Heavy tailed distributions

Table: VRF's for F(x) = |x|, with G; = x', i = 1,2,3 (n = 200,000, npg = 50)

Target distribution
Proposal distr.  t(2.5) ¢(3) t(4) ¢t(5) ¢t(6) ¢t(7)

Uniform 895 579 3.78 3.17 324 228
Normal 009 454 408 273 272 280
Cauchy 354 395 346 375 3.83 4.93
£(0.5) 347 327 289 361 606 9.28
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Summary

@ A solid methodological framework has been provided for the
development and use of control variates in MCMC

@ For given G function, consistent estimates for optimal coefficients 6
are defined

Main reference:
Dellaportas, P. and Kontoyiannis, |. (2008). Control Variates for Reversible MCMC
samplers. Submitted to JRSS(Series B)
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Summary

@ A solid methodological framework has been provided for the
development and use of control variates in MCMC

@ For given G function, consistent estimates for optimal coefficients 6
are defined

Further research
@ Approaches for elicitation of G functions and decision on k
@ Techniques for more efficient derivation of PG(x)

@ Extension to Reversible-Jump MCMC algorithms
Main reference:

Dellaportas, P. and Kontoyiannis, |. (2008). Control Variates for Reversible MCMC
samplers. Submitted to JRSS(Series B)
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Thank you for listening :)
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