Control Variates for Markov Chain Monte Carlo

Dellaportas, P.*, Kontoyiannis, I.[†], and Tsourti, Z.* *Dept of Statistics, AUEB [†]Dept of Informatics, AUEB

1st Greek Stochastics Meeting Monte Carlo: Probability and Methods

Lefkada, August 2009

- 1 MCMC and variance considerations
- 2 Theoretical framework for Control Variates to MCMC
- 3 Control variates for Random-Walk Metropolis-Hastings algorithms
- Application of control variates to RW-MH algorithms
- 5 Summary and Further Research

1 MCMC and variance considerations

- 2 Theoretical framework for Control Variates to MCMC
- 3 Control variates for Random-Walk Metropolis-Hastings algorithms
- 4 Application of control variates to RW-MH algorithms
- 5 Summary and Further Research

MCMC framework

Let

- $\pi(\cdot)$ probability measure on (\mathbb{X}, \mathbb{B})
- $F: \mathbb{X} \to \mathbb{R}$ function of interest
- $\pi(F) := E_{\pi}[F(X)] := \int F d\pi$ the quantity to be estimated

In the MCMC setting, we have

- (X_n) Markov chain on \mathbb{X} , with:
 - P transition kernel
 - π stationary probability measure
- $\pi(F)$ is estimated by the ergodic average:

$$\mu_n(F) = \frac{1}{n} \sum_{i=1}^n F(X_i)$$

MCMC and variance considerations Main Theorems for Markov Chains

• Ergodic Theorem, for Ergodic Markov Chains and appropriate F, $(\pi(|F|) < \infty)$,

$$\lim_{n\to\infty}\mu_n(F)=\pi(F),\qquad\text{a.s.}$$

• **Central Limit Theorem** (CLT) for *Markov Chains* Under appropriate additional conditions:

$$\sqrt{n}[\mu_n(F) - \pi(F)] = \frac{1}{\sqrt{n}} \sum_{i=1}^n [F(X_i) - \pi(F)] \xrightarrow{\mathcal{D}} N(0, \sigma_F^2)$$

where σ_F^2 , the asymptotic variance of *F*, is:

$$\sigma_F^2 := \lim_{n \to \infty} Var_{\pi}[\sqrt{n}\mu_n(F)] = \sum_{n = -\infty}^{\infty} Cov_{\pi}[F(X_0), F(X_n)]$$

Approaches to variance reduction

Importance sampling

• Antithetic sampling/variates

Control variates

Rao-Blackwellization

1 MCMC and variance considerations

Theoretical framework for Control Variates to MCMC

- Introduction of control variates to Markov chains
- Optimal results for reversible chains
- Extension to multiple control variates
- Control variates for MCMC algorithms

3 Control variates for Random-Walk Metropolis-Hastings algorithms

- 4 Application of control variates to RW-MH algorithms
- 5 Summary and Further Research

Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

Let

- $\pi(\cdot)$ target probability measure on (\mathbb{X},\mathbb{B})
- $F: \mathbb{X} \to \mathbb{R}$ function of interest
- $\pi(F) := E_{\pi}[F(X)] := \int F d\pi$ the quantity to be estimated
- (X_n) Markov chain on \mathbb{X} , with:
 - P transition kernel
 - π stationary probability measure

Introduction of control variates to Markov chains

Let

- $\pi(\cdot)$ target probability measure on (\mathbb{X},\mathbb{B})
- $F: \mathbb{X} \to \mathbb{R}$ function of interest
- $\pi(F) := E_{\pi}[F(X)] := \int F d\pi$ the quantity to be estimated
- (X_n) Markov chain on \mathbb{X} , with:
 - P transition kernel
 - π stationary probability measure

further:

- function $U:\mathbb{X}
 ightarrow\mathbb{R}$, with $\pi(U)=0$
- modified function $F_{\theta} = F \theta U$
- modified estimator $\mu_n(F_{\theta}) = \mu_n(F) \theta \mu_n(U)$

Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

All the "regularity" properties of *F* also hold for F_{θ} :

$$\lim_{n\to\infty}\mu_n(F_\theta):=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n F_\theta(X_i)=\pi(F_\theta)=\pi(F),\qquad\text{a.s.}$$

and

$$\sqrt{n}[\mu_n(F_\theta) - \pi(F)] = \frac{1}{\sqrt{n}} \sum_{i=1}^n [F_\theta(X_i) - \pi(F)] \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{F_\theta}^2)$$

Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Introduction of control variates to Markov chains

All the "regularity" properties of *F* also hold for F_{θ} :

$$\lim_{n\to\infty}\mu_n(F_\theta):=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n F_\theta(X_i)=\pi(F_\theta)=\pi(F),\qquad\text{a.s.}$$

and

$$\sqrt{n}[\mu_n(F_\theta) - \pi(F)] = \frac{1}{\sqrt{n}} \sum_{i=1}^n [F_\theta(X_i) - \pi(F)] \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{F_\theta}^2)$$

Research interest:

Introduction of control variates to Markov chains

All the "regularity" properties of F also hold for F_{θ} :

$$\lim_{n\to\infty}\mu_n(F_\theta):=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n F_\theta(X_i)=\pi(F_\theta)=\pi(F),\qquad\text{a.s.}$$

and

$$\sqrt{n}[\mu_n(F_\theta) - \pi(F)] = \frac{1}{\sqrt{n}} \sum_{i=1}^n [F_\theta(X_i) - \pi(F)] \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{F_\theta}^2)$$

Research interest: Find appropriate

- function U
- parameter θ

so as to significantly reduce $(\sigma_{F_{\theta}}^2)$ compared to (σ_F^2) .

In this setting we use:

U = G - PG, for arbitrary G, with $\pi(|G|) < \infty$

In this setting we use:

U = G - PG, for arbitrary G, with $\pi(|G|) < \infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

3

In this setting we use:

U = G - PG, for arbitrary G, with $\pi(|G|) < \infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

Then,

Which $U? \Rightarrow$ Which G?

An alternative expression of the variance in the CLT is:

$$\sigma_F^2 = \pi \left(\hat{F}^2 - (P\hat{F})^2 \right)$$

 \hat{F} : the solution of Poisson's equation:

$$P\hat{F} - \hat{F} = -F + \pi(F)$$

Analogously

$$\sigma_{\theta}^2 := \sigma_{F_{\theta}}^2 = \pi \left(\hat{F}_{\theta}^2 - (P\hat{F}_{\theta})^2 \right)$$

Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Choice of function U

In this setting we use:

$$U = G - PG$$
, for arbitrary G , with $\pi(|G|) < \infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

Then,

Which
$$U? \Rightarrow$$
 Which $G?$

Findings from σ_{θ}^2 elaboration

In this setting we use:

$$U = G - PG$$
, for arbitrary G , with $\pi(|G|) < \infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

Then,

Which
$$U? \Rightarrow$$
 Which $G?$

Findings from σ_{θ}^2 elaboration • If $G = \hat{F} \Rightarrow (\sigma_{F_{\theta}}^2) = 0$

In this setting we use:

$$U=G-PG,$$
 for arbitrary $G,$ with $\pi(|G|)<\infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

Then,

Which
$$U? \Rightarrow$$
 Which $G?$

Findings from σ_{θ}^2 elaboration • If $G = \hat{F} \Rightarrow (\sigma_{F_{\theta}}^2) = 0$

Guidelines for choosing *G* • as close as possible to \hat{F}

In this setting we use:

U = G - PG, for arbitrary G, with $\pi(|G|) < \infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

Then,

Which
$$U? \Rightarrow$$
 Which $G?$

Findings from σ_{θ}^2 elaboration

• If
$$G = \hat{F} \Rightarrow (\sigma_{F_{\theta}}^2) = 0$$

• The higher the correlation between F, U the smaller the $(\sigma_{F_a}^2)$

Guidelines for choosing G

• as close as possible to \hat{F}

In this setting we use:

$$U = G - PG$$
, for arbitrary G , with $\pi(|G|) < \infty$

$$PG(x) = E[G(X_1)|X_0 = x]$$

Then,

Which
$$U? \Rightarrow$$
 Which $G?$

Findings from σ_{θ}^2 elaboration

• If
$$G = \hat{F} \Rightarrow (\sigma_{F_{\theta}}^2) = 0$$

• The higher the correlation between F, U the smaller the $(\sigma_{F_a}^2)$

Guidelines for choosing G

- as close as possible to \hat{F}
- leading to U = G PG highly correlated to F

Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Optimal value of parameter θ

It can be derived that:

$$\sigma_{\theta}^2 = \dots$$

quadratic function with respect to θ .

Theoretical framework for Control Variates to MCMC Introduction of control variates to Markov chains

Optimal value of parameter θ

It can be derived that:

$$\sigma_{\theta}^2 = \dots$$

quadratic function with respect to θ .

Thus,

$$\theta^* = \frac{\pi (\hat{F}G - (P\hat{F})(PG))}{\pi (G^2 - (PG)^2)}$$

Alternative expression (proved by Dellaportas and Kontoyiannis, 2008) with practical usefulness:

$$\theta^* = \frac{\pi(\hat{F}G - (P\hat{F})(PG))}{E_{\pi}\left[(G(X_1) - PG(X_0))^2\right]}$$

Theoretical framework for Control Variates to MCMC Optimal results for reversible chains Optimal empirical estimate of θ^* for reversible chains

If the chain (X_n) is reversible, Dellaportas and Kontoyiannis (2008) prove:

Theorem

$$\pi\left(\hat{F}G-(P\hat{F})(PG)\right)=\pi\left((F-\pi(F))(G+PG)\right)$$

Theoretical framework for Control Variates to MCMC Optimal results for reversible chains Optimal empirical estimate of θ^* for reversible chains

If the chain (X_n) is reversible, Dellaportas and Kontoyiannis (2008) prove:

Theorem

$$\pi\left(\hat{F}G - (P\hat{F})(PG)\right) = \pi\left((F - \pi(F))(G + PG)\right)$$

So, the **optimal value** of θ (for reversible chains) can be expressed as

$$\theta_{rev}^* = \frac{\pi \left((F - \pi(F))(G + PG) \right)}{E_{\pi} \left[\left(G(X_1) - PG(X_0) \right)^2 \right]}$$

Theoretical framework for Control Variates to MCMC Optimal results for reversible chains Optimal empirical estimate of θ^* for reversible chains

If the chain (X_n) is reversible, Dellaportas and Kontoyiannis (2008) prove:

Theorem

$$\pi\left(\hat{F}G - (P\hat{F})(PG)\right) = \pi\left((F - \pi(F))(G + PG)\right)$$

So, the **optimal value** of θ (for reversible chains) can be expressed as

$$\theta_{rev}^{*} = \frac{\pi \left((F - \pi(F))(G + PG) \right)}{E_{\pi} \left[(G(X_{1}) - PG(X_{0}))^{2} \right]}$$

In this case, θ can be adaptively estimated as

$$\hat{\theta}_n = \frac{\mu_n(F(G + PG)) - \mu_n(F)\mu_n(G + PG)}{\frac{1}{n}\sum_{i=1}^n [G(X_i) - PG(X_{i-1})]^2}$$

Extension to multiple control variates

Let's further assume:

- k functions $U_j(=G_j PG_j) : \mathbb{X} \to \mathbb{R}$, with $\pi(U_j) = 0$
- Notation with vectors:

$$G = \begin{pmatrix} G_1 \\ G_2 \\ \dots \\ G_k \end{pmatrix} : \mathbb{X} \to \mathbb{R}^k \qquad U = \begin{pmatrix} U_1 \\ U_2 \\ \dots \\ U_k \end{pmatrix} : \mathbb{X} \to \mathbb{R}^k \qquad \theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \dots \\ \theta_k \end{pmatrix} \in \mathbb{R}^k$$

• modified function $F_{\theta} = F - \langle \theta, U \rangle = F - \sum_{j=1}^{k} \theta_j U_j$

Theoretical framework for Control Variates to MCMC Extension to multiple control variates

Extension to multiple control variates

Analogously to the one-dimensional case, we have that:

$$\sigma_{F_{\theta}}^{2} = \sigma_{F}^{2} - 2\pi \big(\hat{F} \langle \theta, G \rangle - P \hat{F} \langle \theta, PG \rangle \big) + \pi \big(\langle \theta, G \rangle^{2} - \langle \theta, PG \rangle^{2} \big)$$

$$\psi$$

$$\theta^* = K(G)^{-1}\pi \left(\hat{F}G - (P\hat{F})(PG)\right)$$

where

$$K(G)_{ij} = E_{\pi} \left[\left(G_i(X_1) - PG_i(X_0) \right) \left(G_j(X_1) - PG_i(X_0) \right) \right]$$

For reversible chains, Dellaportas and Kontoyiannis (2008) prove:

Theorem

$$\theta^* = K(G)^{-1}\pi((F - \pi(F))(G + PG))$$

Theoretical framework for Control Variates to MCMC Control variates for MCMC algorithms

Use of control variates for the reduction of variance of MCMC algorithms

Control Variate methodology directly applicable to reversible MCMC algorithms

Derivation of $\mu_n(F_{\theta})$ straightforward. Quantities needed:

- $F(X_i)$, $G_j(X_i)$ for i = 1, ..., n, j = 1, ..., k: OK, readily available
- BUT PG_j(X_i)? This issue may require further attention...

Most popular MCMC algorithms:

• Gibbs sampler

Treated in detail in Dellaportas and Kontoyiannis (2008)

• Metropolis-Hastings algorithm Random Walk (RW-MH) Theoretical framework for Control Variates to MCMC Control variates for MCMC algorithms

Use of control variates for the reduction of variance of MCMC algorithms

Control Variate methodology directly applicable to reversible MCMC algorithms

Derivation of $\mu_n(F_{\theta})$ straightforward. Quantities needed:

- $F(X_i)$, $G_j(X_i)$ for i = 1, ..., n, j = 1, ..., k: OK, readily available
- BUT *PG_j(X_i)*? This issue may require further attention...

Most popular MCMC algorithms:

• Gibbs sampler

Treated in detail in Dellaportas and Kontoyiannis (2008)

• Metropolis-Hastings algorithm Random Walk (RW-MH)

2) Theoretical framework for Control Variates to MCMC

Control variates for Random-Walk Metropolis-Hastings algorithms

- Introduction to the algorithm
- Elaboration on PG(X)

4 Application of control variates to RW-MH algorithms

5 Summary and Further Research

Setting of RW-MH

Assume the following:

- Our target distribution is a d-dimensional probability density $\pi(x)$
- The "Random Walk Metropolis-Hastings" (RW-MH) algorithm used for the simulation of π can be described as:
 - Assume initial value X_0 and $Y_0 = X_0 + \Delta_0$, where $\Delta_0 \sim P_{\Delta}$ (d-variate symmetrical distribution)
 - At step t + 1, given $X_t = x_t$, $Y_t = y_t = x_t + \Delta_t$, we have that:

•
$$X_{t+1} = \begin{cases} x_t + \Delta_t = y_t & \text{w.pr. } \rho(x_t, y_t) \\ x_t & \text{w.pr. } 1 - \rho(x_t, y_t) \end{cases}$$

where

$$\rho(x_t, y_t) = \min\left\{1, \frac{\pi(y_t)}{\pi(x_t)}\right\}$$

• we simulate
$$\Delta_{t+1} \sim P_\Delta$$

$$PG(x) = E_{X_1} \big[G(X_1) \mid X_0 = x \big]$$

$$PG(x) = E_{X_1} [G(X_1) | X_0 = x] = E_{Y_0} \{ E_{X_1} [G(X_1) | X_0 = x, Y_0 = y] \}$$

$$PG(x) = E_{X_1} [G(X_1) | X_0 = x]$$

= $E_{Y_0} \{ E_{X_1} [G(X_1) | X_0 = x, Y_0 = y] \}$
= $E_{Y_0} \{ \rho(x, y) \cdot G(y) + (1 - \rho(x, y)) G(x) \}$

$$PG(x) = E_{X_1} [G(X_1) | X_0 = x]$$

= $E_{Y_0} \{ E_{X_1} [G(X_1) | X_0 = x, Y_0 = y] \}$
= $E_{Y_0} \{ \rho(x, y) \cdot G(y) + (1 - \rho(x, y)) G(x) \}$
= $G(x) + E_{Y_0} \{ \rho(x, y) \cdot (G(y) - G(x)) \}$

Use of control variates for RW-MH - PG(x) elaboration

$$PG(x) = E_{X_1}[G(X_1) | X_0 = x]$$

= $E_{Y_0} \{ E_{X_1}[G(X_1) | X_0 = x, Y_0 = y] \}$
= $E_{Y_0} \{ \rho(x, y) \cdot G(y) + (1 - \rho(x, y)) G(x) \}$
= $G(x) + E_{Y_0} \{ \rho(x, y) \cdot (G(y) - G(x)) \}$

i.e.

 $PG(x) = G(x) + E_{Y_0} \left\{ \rho(x, y) \cdot \left(G(y) - G(x) \right) \right\}, \text{ where } Y_0 \sim q(y \mid x)$

Use of control variates for RW-MH - PG(x) elaboration

$$PG(x) = E_{X_1}[G(X_1) | X_0 = x]$$

= $E_{Y_0} \{ E_{X_1}[G(X_1) | X_0 = x, Y_0 = y] \}$
= $E_{Y_0} \{ \rho(x, y) \cdot G(y) + (1 - \rho(x, y)) G(x) \}$
= $G(x) + E_{Y_0} \{ \rho(x, y) \cdot (G(y) - G(x)) \}$

i.e.

$$PG(x) = G(x) + E_{Y_0} \left\{ \rho(x, y) \cdot \left(G(y) - G(x) \right) \right\}, \text{ where } Y_0 \sim q(y \mid x)$$

Several approaches may be considered for the estimation of PG(x).

- Monte Carlo estimation based on P_{Δ}
- Importance sampling based on the proposed values y

1 MCMC and variance considerations

- 2 Theoretical framework for Control Variates to MCMC
- 3 Control variates for Random-Walk Metropolis-Hastings algorithms

Application of control variates to RW-MH algorithms

- The simple case of Univariate Normal
- Case-study of a survival analysis
- Poisson generation
- Heavy tailed distributions

Application of control variates to RW-MH algorithms -Univariate Normal

- Target : $N(0, \sigma_t^2 = 10)$
- Proposal : $N(0, \sigma_{pr}^2 = 160)$
- We use F(x) = x and G(x) = x

Application of control variates to RW-MH algorithms -Univariate Normal

- Target : $N(0, \sigma_t^2 = 10)$
- Proposal : $N(0, \sigma_{pr}^2 = 160)$
- We use F(x) = x and G(x) = x
- Framework for the evaluation of variance reduction:
 - Optimal value of θ based on Dellaportas and Kontoyiannis (2008) approach for reversible chains
 - Terms of *PG*(*x*) assessed using Monte Carlo estimates from the proposal distribution
 - T = 100 repetitions for each simulation scenario.
 - "Variance Reduction Factors":

$$\mathsf{VRF} = \frac{S^2_{\mu_n(F)}}{S^2_{\mu_n(F_\theta)}}$$

Application of control variates to RW-MH algorithms -Univariate Normal

Figure: Ergodic means for different realizations with n = 100,000 and $n_{PG} = 50$ °

August 29, 2009

23 / 42

Application of control variates to RW-MH algorithms -Univariate Normal

Table: VRF's in Univariate Normal case - Normal proposal - Simplest G(x) = x

	Length of Markov chain (number of iterations n)									
n _{PG}	1,000	2,000	5,000	10,000	20,000	50,000	100,000			
5	7.25	7.06	5.61	9.12	8.96	7.64	8.60			
10	11.56	9.54	8.46	14.35	10.79	15.33	12.26			
20	13.05	22.19	15.94	30.20	20.64	19.12	26.02			
50	23.31	40.45	44.01	35.85	45.65	39.51	34.95			
100	36.06	34.68	43.31	60.45	49.34	40.57	54.33			
200	41.55	56.49	32.98	42.09	57.14	78.11	61.99			
500	36.52	62.54	70.50	50.65	55.28	55.97	50.40			
1,000	32.30	41.40	66.05	68.69	50.00	64.52	96.26			

Application of control variates to RW-MH algorithms -Univariate Normal

Study of the effect of G functions

1.
$$G(x) = x$$

2. $G_1(x) = x$, $G_2(x) = x^2$
...
k. $G_1(x) = x$, $G_2(x) = x^2$, ..., $G_k(x) = x^k$
...

Application of control variates to RW-MH algorithms -Univariate Normal

Figure: Plot of VRF by the order of polynomial G functions 3

Application of control variates to RW-MH algorithms -Univariate Normal

Table: VRF's in Univariate Normal case - Normal proposal - Polynomial G functions of order 4, i.e. $G_1(x) = x$, $G_2(x) = x^2$, $G_3(x) = x^3$, $G_4(x) = x^4$

	Length of Markov chain (number of iterations <i>n</i>)								
n _{PG}	1,000	2,000	5,000	10,000	20,000	50,000	100,000		
5	6.47	5.94	5.72	8.76	9.34	8.46	8.19		
10	10.40	9.33	9.74	14.27	12.18	14.82	11.71		
20	9.89	21.51	16.15	38.03	27.55	22.25	30.87		
50	19.51	37.58	64.26	29.73	51.58	52.28	49.82		
100	25.83	20.75	59.09	68.35	66.50	60.89	71.72		
200	15.15	42.49	37.94	69.41	80.34	152.59	106.34		
500	17.82	31.58	78.46	78.33	82.35	100.31	112.40		
1,000	16.68	23.61	92.50	114.56	109.26	_127.89	<u></u> 180.37		

27 / 42

Application of control variates to RW-MH algorithms -Univariate Normal

August 29, 2009 28 / 42

Application of control variates to RW-MH algorithms -Univariate Normal

Study of the effect of the proposal distribution

Table: VRF's in Univariate Normal case - T-student proposal (3 df's, variance 160) - Simplest function G(x) = x

	Length of Markov chain (number of iterations <i>n</i>)								
n _{PG}	1,000	2,000	5,000	10,000	20,000	50,000			
5	6.73	7.16	10.25	8.59	8.64	5.69			
10	10.69	8.70	12.45	13.68	10.39	15.76			
20	17.68	28.25	21.26	20.21	19.98	27.64			
50	22.64	36.28	37.14	44.02	48.17	52.30			
100	28.88	48.08	30.06	42.89	54.28	53.40			
200	51.35	50.93	52.94	54.31	84.32	46.03			
500	55.65	63.28	60.25	86.49	68.40	57.05			

Application of control variates to RW-MH algorithms -Univariate Normal

Study of the effect of the proposal distribution

Table: VRF's in Univariate Normal case - Uniform proposal $(-5.5 \cdot \sigma_t, +5.5 \cdot \sigma_t)$ - Simplest function G(x) = x

	Length of Markov chain (number of iterations n)								
n _{PG}	1,000	2,000	5,000	10,000	20,000	50,000			
5	5.52	5.81	8.21	5.38	5.90	7.25			
10	7.94	8.77	11.11	10.71	8.59	8.72			
20	11.08	18.53	19.59	15.27	20.23	17.35			
50	27.22	26.33	18.14	17.94	17.35	21.84			
100	19.74	26.00	19.72	15.23	18.58	21.51			
200	18.14	22.50	23.82	26.99	30.12	22.76			
500	18.84	18.61	18.36	26.25	25.85	20.14			

August 29, 2009 30 / 42

Application of control variates to RW-MH algorithms -Survival analysis

Source: Albert, J. (2007). Bayesian Computation with R, Springer.

Data:

Lifetime of a number of patients some of which had a heart transplant.

Model assumptions:

- Non-transplant patients: $X_i \sim {\sf Exponential}$ with mean $1/\eta$
- Transplant patients: $X_i \sim$ Exponential with mean $1/(au\eta)$
- Parameter $\eta \sim Gamma(p,\lambda)$, i.e. $f(\eta) = \frac{\lambda^p}{\Gamma(p)} \eta^{p-1} exp(-\lambda \eta)$
- Unknown parameter vector: (τ, λ, p) (all positive)

Notation: N non-transplant patients:

- n: died
- *N* − *n*: censored
- x_i survival time

M transplant patients:

- m: died
- *M* − *m*: censored
- y_i time to transplant
- z_i survival time , < = , <</p>

Application of control variates to RW-MH algorithms -Survival analysis

Likelihood:

$$L(\tau,\lambda,\rho) = \prod_{i=1}^{n} \frac{p\lambda^{p}}{(\lambda+x_{i})^{p+1}} \prod_{i=n+1}^{N} \left(\frac{\lambda}{\lambda+x_{i}}\right)^{p} \prod_{j=1}^{m} \frac{\tau p\lambda^{p}}{(\lambda+y_{j}+\tau z_{j})^{p+1}} \prod_{j=m+1}^{M} \left(\frac{\lambda}{\lambda+y_{j}+\tau z_{j}}\right)^{p}$$

Prior distribution of parameters: $g(au,\lambda,p)\propto 1$

Posterior distribution of parameters: $g(au, \lambda, p | \mathsf{data}) \propto L(au, \lambda, p)$

Transformation

$$egin{aligned} \phi &= \left(\phi_1 := \log au, \phi_2 := \log \lambda, \phi_3 := \log p,
ight) \ g(\phi | \mathsf{data}) \propto L\left(e^{\phi_1}, e^{\phi_2}, e^{\phi_3}
ight) \cdot e^{\sum_{i=1}^3 \phi_i} \end{aligned}$$

Application of control variates to RW-MH algorithms -Survival analysis

Table: Function $F(\tau, \lambda, p) = log(\tau) = \phi_1$, n = 10,000, $n_{PG} = 50$

Form of G	$\left[\begin{array}{c} G_1 = \phi_1 \\ G_2 = \phi_2 \\ G_3 = \phi_3 \end{array}\right]$	$\begin{bmatrix} G_1 = \phi_1^2 \\ G_2 = \phi_2^2 \\ G_3 = \phi_3^2 \end{bmatrix}$	$C. \left[\begin{array}{c} G_1 = \phi_1 \\ G_2 = \phi_1^2 \end{array} \right]$	$D. \left[\begin{array}{c} G_1 = \phi_1 \\ G_2 = e^{\phi_1} \end{array} \right]$
VRF	29.9	1.4	41.6	30.7
Form of G	$E. \begin{bmatrix} G_1 = \phi_1 \\ G_2 = \phi_1^2 \\ G_3 = \phi_2 \\ G_4 = \phi_2^2 \\ G_5 = \phi_3 \\ G_6 = \phi_3^2 \end{bmatrix}$	$F. \begin{bmatrix} G_1 = \phi_1 \\ G_2 = \phi_1^2 \\ G_3 = \phi_2 \\ G_4 = \phi_2^2 \end{bmatrix}$	$G. \begin{bmatrix} G_1 = \phi_1 \\ G_2 = \phi_1^2 \\ G_3 = \phi_3 \\ G_4 = \phi_3^2 \end{bmatrix}$	
VRF	42.3	37.4	35.4	

August 29, 2009

()

Application of control variates to RW-MH algorithms -Survival analysis

Figure: Plot of VRF by *n*, function $F(\tau, \lambda, p) = log(\tau) \Rightarrow \phi_{17} \rightarrow \phi_{17} \rightarrow \phi_{17}$

August 29, 2009

34 / 42

(

Application of control variates to RW-MH algorithms Poisson generation

Application of control variates to RW-MH algorithms -Poisson generation

Setting:

- Target distribution π : Poisson(λ),
- Proposal: discrete bell-shaped:

$$P^M_\Delta(\Delta=\delta)=rac{M+1-|\delta|}{M(M+1)},\quad \delta\in\{-M,-M+1,...,-1,+1,...,M-1,M\}$$

Inference is focused on:

$$F(\lambda) = \sqrt{\lambda}$$

• To enhance estimation of $\pi(F)$:

$$F^{G,\theta}(\lambda) = F(\lambda) - \theta \cdot U(\lambda)$$

where U = G - PG

Application of control variates to RW-MH algorithms Poisson generation

Application of control variates to RW-MH algorithms -Poisson generation

• The form of function G used here is

$$G(\lambda) = \lambda$$

• In the present setting:

$$PG(x) = E_{\pi} [G(\lambda_{t+1})|\lambda_t = x]$$

= ...
= $x + \sum_{j=-k,\neq 0}^{k} [P_{\Delta}^k(j) \cdot j \cdot \rho(x, x+j)]$

• The terms of PG(x) are assessed using two approaches:

- (i) Using the exact formula
- (ii) Using Monte Carlo estimates from P_{Δ}^{k} distribution

Application of control variates to RW-MH algorithms Poisson generation

Application of control variates to RW-MH algorithms -Poisson generation

Table: VRF's for $F(x) = \sqrt{x}$, G(x) = x for n = 5,000 (analytic formula for PG(x))

	Proposal distribution P_{Δ}^{M}								
Target $P(\lambda)$	1	10	15	20	30	40	70		
$\lambda = 5$	34.7	42.2	43.3	27.1	-	-	-		
$\lambda = 10$	50.8	-	89.6	83.1	64.9	-	-		
$\lambda = 100$	10.2	23.9	-	-	-	40.0	174.1		

Application of control variates to RW-MH algorithms -Heavy tailed distributions

Source: Jarner, S.F. and Roberts, G.O. (2007). Convergence of Heavy-tailed Monte Carlo Markov Chain Algorithms. *Scandinavian Journal of Statistics*. **34**, 781-815.

Main result for RW-MH: Heavy tailed proposals lead to higher rates of convergence

Focus: Polynomially ergodic Markov chains

For polynomial target distributions: they derive polynomial rates of convergence

Application of control variates to RW-MH algorithms Heavy tailed distributions

Application of control variates to RW-MH algorithms -Heavy tailed distributions

Table: Existence of central limit theorems for RW-MH algorithm (from Jarner and Roberts, 2007)

	Target distribution								
Proposal distr.	t(2.5)	t(3)	t(4)	t(5)	t(6)	t(7)			
Uniform			L	С	С	С			
Normal			L	С	С	С			
Cauchy		L	С	С	С	С			
t(0.5)	L	L	С	С	С	С			
C: CLT holds for		T holds	for v	s c / 1					

C: CLI holds for |x|, L: CLI holds for $|x|^s$, s < 1

Application of control variates to RW-MH algorithms Heavy tailed distributions

Application of control variates to RW-MH algorithms -Heavy tailed distributions

Table: VRF's for F(x) = |x|, with $G_i = x^i$, i = 1, 2, 3 ($n = 200, 000, n_{PG} = 50$)

	Target distribution								
Proposal distr.	t(2.5)	t(3)	t(4)	t(5)	t(6)	t(7)			
Uniform	8.95	5.79	3.78	3.17	3.24	2.28			
Normal	0.09	4.54	4.08	2.73	2.72	2.80			
Cauchy	3.54	3.95	3.46	3.75	3.83	4.93			
t(0.5)	3.47	3.27	2.89	3.61	6.06	9.28			

Summary and Further Research

Summary

- A solid methodological framework has been provided for the development and use of control variates in MCMC
- For given G function, consistent estimates for optimal coefficients $\boldsymbol{\theta}$ are defined

Main reference:

Dellaportas, P. and Kontoyiannis, I. (2008). Control Variates for Reversible MCMC samplers. Submitted to JRSS(Series B)

Summary and Further Research

Summary

- A solid methodological framework has been provided for the development and use of control variates in MCMC
- For given G function, consistent estimates for optimal coefficients $\boldsymbol{\theta}$ are defined

Further research

- Approaches for elicitation of G functions and decision on k
- Techniques for more efficient derivation of PG(x)
- Extension to Reversible-Jump MCMC algorithms

Main reference:

Dellaportas, P. and Kontoyiannis, I. (2008). Control Variates for Reversible MCMC samplers. Submitted to JRSS(Series B)

Summary and Further Research

Summary and Further Research

Thank you for listening :)

