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Diffusion process

A diffusion process V is a driven by
Brownian Motion (BM) B, defined as the solution to the Stochastic
Differential Equation (SDE)

dVs = B(Vs; 0)ds + o(Vs; 0)dBs , Vo = v, s > 0.

The drift 3(.;0) and diffusion coefficient o(.; 8) functionals model the
instaneous mean and variance and are allowed to depend on a vector of
parameters 6.



Transition density

The exact dynamics of the diffusion process are governed by its transition
density (wrt the Lebesgue measure)

pe(u,w;0)=P(Vy €dw | Vo = u;0)/dw, t >0, w, ucR.

Unfortunately, it is typically unavailable except for a few cases. An
approximation is given for sufficiently small time increment dt
(Euler-Maruyama)

Virar = Ve + B(Ve; 0)dt + o(Ve; 0)VdtZ, Z ~ N(0,1)

par(u, w; 0) =~ N {w; u+ B(u; 0)dt, o>(u; )dt} ;

where N {w; i1, 02} is the density of a Gaussian r.v. with mean p and
variance ¢ evaluated at w € R.



The process is defined in continuous time but the available data are
always sampled in discrete time

Y:{VtO,Vt17...7th}7 0:t0<t1<<tn

Let At; = t; — tj_1 be the time increment between consecutive
observations.

GOAL: Infer on the parameter vector ¢ given the data,

n
7T(9 ‘ Y) X W(g) H pAti(Vtr'—U Vti; 9)

i=1
but the transition density is unavailable. Intuitevily it is the marginal
density where the path between two consecutive points has been
integrated out.
Proceed by augmenting the data with the missing paths in between since
there exists an analytic expression for the complete likelihood.



Complete path and likelihood

Without loss of generality assume only two observations, V and V;. For
simplicity assume o(.;0) = o and let V = {V,, 0 <s < t} be the
complete path from

AV, = B(Vs; 0)ds + odB.

We can write the density of a complete path w.r.t. the law W, of the
simpler driftless process dMs; = odB; (Girsanov) as

G(V;0) —exp{ ﬂvs'odvff/ 62 Vs,t9 }

Proceed to a Metropolis within Gibbs (MwG) algorithm

e Sample from 7(V | Y, 0) - this is a path from the diffusion bridge
(intractable) = propose from the simpler driftless process, Brownian
Bridge (BB)

e Sample from 7(0 | Y, V).



There are two problems with this approach:

e Simulation of a complete path is not possible (infinite dimensional).
It is necessary to discretize the imputed path in finite number of
points.

e The missing path contains infinite information on the parameters
involved in the diffusion coefficient due to the

m
im > (Vii/m — Vig-1y/m)” = to”.
i=1
Strong dependence = the finer the discretization of the path gets,
the worse the mixing of the chain becomes.

Following Roberts and Stramer (2001), need to transform the missing
path to break this dependence and create a parameter free dominating
measure. The transformation takes place in two stages.



First path transformation: Transform the original SDE to a unit
diffusion coefficient one by applying X :=n(V;0) = fv 1/o(u; 0)du.
[t6's formula gives

dXs = a(Xs; 0)ds + dBs, xo(0) = n(Vo; 0);

where

BN P Ul 1) 1) S U CLO LA §
’ o{n(u;0); 6} 2

The driftless process now is BM starting at xp(6) - not parameter free
measure. '
Second path transformation: If X is the bridge constructed by
conditioning X on x:(6) = n(V;; 8) then

- . s s
Xs = Xs — (1 — ?)XO(Q) — ?Xt(e)
This transformation forces the bridge to start and finish at 0. The inverse
transformation is given by

go(X) = X+ (1 — %)Xg(@) n %xt(e).



We can now write a joint density for the transformed missing path X and
the data Y w.r.t. the parameter free product measure Leb x W(t:0-0)

(X, ¥ [60) o< |0 (vi; O)IN {x:(8): x0(6). £} G{ga(X); 0}
where W(t:0.0) is the law of a BB from (0, 0) to (t,0).
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MwG implementation:

° 7T(X | Y,6) - discretize the path and use a Metropolis step proposing
by something tractable (BB). The acceptance ratio depends on G.

o (0] Y,)"() - Approximate the integrals by Riemman sums and use

M-1 5 M1
exp{ — Y af{gn(X): 0} Ag (X)) - 5 > a{en(X)); 6}
=0 =0

Consequence: We are sampling from an approximation to the posterior.



An example - The SINE process

Consider 1000 equidistant observations, At = 0.5, from the SINE
process,

dVs = sin(V; — ¢)ds + odBs,

with ¢ = 7 and ¢ = 0.5. We run the algorithm for three values of
m = {5,10,20}.



Figure: Trace plots and autocorrelation function for ¢ using m =5 (left) and
m = 20 (right).
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Figure: Running average for ¢ for the three discretization schemes. In
parentheses are the units of time needed for 1000 iterations of the EA chain.
The average number of imputed points for the EA was 2.
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Figure: Running average for log(o) for the three discretization schemes. In
parentheses are the units of time needed for 1000 iterations of the EA chain.
The average number of imputed points for the EA was 2.




The Exact Algorithm

The problem can be tackled using a novel methodology for simulating the
skeleton of a diffusion bridge with no discretization error (Beskos et al
2006).

Let Z = {Z},0 < s <t be a unit diffusion coefficient diffusion satisfying

dZ, = a(Zs; 0)ds + dB,

starting at (0, x) and finishing at (t, y); denote its law by Q, (£%,5),

We can write the density of the diffusion bridge w.r.t that of a BB

dQ(et,x,y) ; ) . i
T @) o exp _/O a(ws;H)dws—E/o a”(ws;

exp {_ /Ot %(oﬂ +a)(Ys: G)ds} :

variable.
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We can write the density of the diffusion bridge w.r.t that of a BB

dQy™ r L
T @) o exp _/O a(ws;H)dws—E/o a”(ws;

exp {_ /Ot %(oﬂ +a)(Ys: G)ds} :

variable.
IDEA: Proceed to simulation by bounding the density and use Rejection
Sampling.



Assumptions:
e af(.;0) is continuously differentiable. Let o(.; ) be its derivative.
e (a®+a')(.;0) is bounded below (mild, usually satisfied).
1(0) < inf 1( 2+ a)(u;0)
TGN
e For a given w define the range as
1,
r(w;0) > sup < =(a”+a )ws;0)—1(0) ¢ .
s€[0,t] 2
and assume that r(w; 8) = r{H(w); 8} where H(w) is a finite
dimensional path characteristic.
Define the non-negative function 0 < ¢ <1 as

oerit) = 7o {502 4 N wai) - 1)}




Using It6's formula we can rewrite the density of the diffusion bridge as

d@(gt,x,y) .
W) @) eXp{_r(Wia)/o ¢(ws;9)ds} <1

Ideally, we would simulate a complete BB path and evaluate this density.

We can construct a Bernoulli experiment which has acceptance
probability equal to the bounded density using an auxiliary random
variable.

Theorem: Let ® be a homogeneous Poisson process of intensity r(w; )

on [0, t]x[0,1] and N the number of points of ¢ below the graph
s — ¢(ws; 0). Then

P(N =0 | w) = exp {—r(w; 0) /Ot (ws; G)ds} .



A rejection sampling would be as follows

1. Simulate a complete path w ~ W),

2. Evaluate H(w) and calculate r(w; 6). Draw k ~ Po{r(w; 6)t} and
generate a marked Poisson process ¢ = {W, T}, where
W = {¢1,...,%,} are uniformly distributed points on [0, t] and
T = {v1,...,v,} are uniform marks on [0, 1].

3. Simulate a skeleton of the proposed path S(w) := {wy;,j =1,..., 5}
at finite number of points W and compute the acceptance indicator

o= T 0(ws) < vl

j=1
4. If I =1 accept the proposed BB, otherwise repeat.

Implemenation is impossible. Note though that decision of acceptance
depends only on finite information {H(w), ®, S(w)} = change the order
of steps (1,2). The technique is called Retrospective Sampling,
introduced in Papaspiliopoulos and Roberts (2008) and the resulting
algorithm is the Exact Algorithm (EA).
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Figure: The graph of s — ¢(ws; ).
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Therefore, the EA keeps proposing (w, ®) and decides its acceptance
based only on partial information (finite) on the path

X = {H(w), d, S(w)}.

The r.v. X can be thought of as a random sufficient statistic for the
diffusion bridge; can construct the complete path simulating a BB given
X.

Depending on the drift functional we have three EA types

e Case where (a2 4 a')(.;6) is bounded above (EA1).
No need to simulate H(w) since r(w;8) = r(0).

o Case where limsup, . (a? + o' )(u; ) < co (EA2).
Evaluation of r(w; @) requires simulation of m = inf{ws;s € [0, t]}
and 7 = sup{s € [0, t] : ws = m}.

e Otherwise (EA3).
Evaluation of r(w; 6) requires simulation of a lower and upper bound
of the BB.



Using the EA for an exact MCMC

Fix two points x and y. Let P be the measure of a unit rate Poisson
process on [0, t] x [0, 1]. The density of an accepted (w*, ®*) from x to

yis

G)t

(W, ®" | x,y,0) = H[ {%* 0=y H

Jj=1

w.r.t. the product measure P x W(:0.0) (parameter free). The term
k(x,y;0) o< pr(Vo, Vi; 0) is intractable.

e This density can be evaluated using partial information
X ={o*, S(w*)}.
e No need for any discretization. The method is exact.

e Augment the observed data with the accepted elements of the EA
and proceed to a MwG.



The corresponding hierarchical model is

0 ~ 7(6),
Vt | Vng ~ Pt(\/07 Vt;9)7
(W*vq)*) ‘ 07X0(0)7Xf(9) ~ W{W*acb* | 9,x0(9),xt(9)}.

The observed data are in the mlddle of the hierarchy, ensuring that the
output of the EA is indeed from Q £200)x(0)  Also allows to work with
likelihood functions that have intractable constants, the constant
k(x0(0), x:(0); 8) and the transition density have been cancelled out.
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Figure: Trace plots and autocorrelation function for ¢ (left) and log(c) (right).



Non-centring of the EAL

Motivation:

Consider again 100 equidistant observations, At = 5, from the SINE
process,

dVs =sin(Vs — ¢)ds + od B,
with ¢ = 7 and 0 = 0.5.
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Figure: Trace plots and autocorrelation function for log(c).




The performace of the chain deteriorates with large time increments.

Intuition:

e The number of points at which the missing path is evaluated
increases linearly with the time increment, the EA requires
k ~ Po[r(w, 8)At].

e The amount of information on the missing path increases - the
missing path has to be evaluated at more points.

e The data (start and end of the missing path) do not provide enough
information on this missing skeleton.

e Strong posterior dependence between the missing path and the
parameters.

Noncentring reparametrizations:

Construct variable X* such that the missing data X = h(X*,0) =
a-priori independence between X*, 0.

Construction of noncentred reparametrizations of the Poisson process are
based on thinning properties, Roberts et al (2004).



o 2000 4000 6000 8000 10000

o 20 a0 60 80 100

Figure: Trace plots and autocorrelation function for log(c) using the
noncentred reparametrization.



Interweaving strategy
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Figure: Trace plots and autocorrelation function for log(o) using the
interweaving strategy.



A diffusion process in the EA2 class

Consider 1000 equidistant observations, At = 0.5, from the log growth
process,

V.
dV; = pV(1 — T)ds + o VedB,

with (p, A, o) = (0.1,1000,0.1).



Figure: Trace plots and autocorrelation function for log(p), log()\), log(o)
using the centred parametrization.



Slow mixing due to:

e The minimum of the path for a current value 6 between the
observations xo(8), x;(6) is very informative on 6.

e The proposal 8* from a Metropolis step is very likely to be rejected.

e Noncentred reparametrization for the minimum and its location
{m(0),7(0)} is straightforward. These r.v.s are easily simulated in
terms of an Exponential, a standardized Gaussian and a Uniform r.v.



Figure: Trace plots and autocorrelation function for log(p), log()\), log(o)
using the noncentred parametrization.



Discussion

e The method is exact and the only source of error is from the Monte
Carlo simulations.

e Computationally efficient since the missing data are easy to simulate
and usually low dimensional.

e Implementations of noncentered reparametrizations and interweaving
strategies are straightforward and can significantly increase the
speed of convergence.
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