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Context: Markov processes

In this lecture we consider time-ordered processes. Why Markov?

I Statistical: first-order approximation on a sequence of random
variables which cannot be treated independent

I Mathematical: the generator (and the initial conditions)
identify the process. Questions of stationarity, convergence,
ergodicity, etc, can be neatly formulated and investigated.

I Computational: Simulating exactly a Markov chain path
(X1,X2, . . . ,XT ) can be done by T − 1 applications of the
same algorithm: Simulate X2 given X1. Break of the curse of
dimensionality.



Spatial processes

The mathematics and modelling are rather different when the
time-ordering is not available. The Markov property can be defined
on arbitrary sets equipped with a neighbourhood structure (eg
lattice processes, graphical models); Nial’s lecture

Local smoothing; Gaussian processes

The methods of this lecture do not apply to arbitrary
neighbourhood structures. The most straightforward extension is
to trees



Forward-Backward simulation

We can name the problem of simulating a Markov process forward
in time (some times we will say unconditionally, although we might
condition on the first value) as forward simulation. This is at least
in principle feasible, although doing it exactly when the time
parameter is the positive real line has to be carefully thought.

Nevertheless, this lecture is particularly interested in the backward
simulation problem: that of simulating X given information about
the future, we will call this conditional simulation, hence simulation
of conditioned Markov processes. In the passing we will address
the exact aspect of the forward problem

Canonical problem (to have in mind):

simulate X given X0 = u and XT = v (1)



Backward simulation

Here, we are interested in simulating from conditioned Markov
processes, where the type of conditioning event is such that the
conditioned process is still Markov. Example: the one given above.

Another point of view: simulating from certain changes of
measures from a Markov probability measure (Feynman-Kac
problems).

The aim of the lecture is to address the following questions: can
we simulate exactly certain classes of conditioned Markov
processes, and can we do it efficiently (i.e polynomial time)?
Black-box methods?



We will approach this question by considering different types of
state-spaces, time-parameters and conditioning events:

I discrete-time, discrete-space: Hidden Markov Models (HMMs)

I continuous-time, discrete space: discretely observed with error
Markov Jump Processes (MJPs)

I continuous-time, continuous-space: diffusion bridges

This course will give a rather complete presentation of statistical
inference and simulation for HMMs; it will characterize
mathematically the dynamics of conditioned MJPs; it will introduce
simulation of diffusion bridges. We will also demonstrate a few
simple theoretical tools (dynamic programming, generalized Bayes
formula, generalized importance sampling, Girsanov’s theorem,
likelihood ratios for conditioned processes, retrospective sampling)

My hope is that even a completely uninterested in the topic
member in the audience will find at least 2-3
ideas/methods/intuitions which are of interest



Part I: Hidden Markov Models, estimation and simulation

I Introduce a class of parameter-driven time series models

I Re-formulate as local-property-preserving change-of-measure
from a Markov chain measure. The resulting structure is
fundamental in applied maths by appropriately specifying the
state-space, the generator and the weights. Some diverse
examples.

I Powerful machinery: forward-backward recursions
(decomposition of Bayes formula) inspired by dynamic
programming techniques.

I Efficient conditional simulation, marginal computations



HMMs as time-series models

Let Yi , i = 1, . . . ,T be a series of serially-dependent observations
(taking values in a measurable space).

Let Xi , i = 1, . . . ,T be a Markov Chain (MC) with state-space
X = {1, . . . , d}, transition matrix γ, and initial distribution
X1 ∼ δ. We assume time-homogeneity only for notational
simplicity, and identify X with {1, . . . , d} without loss of
generality. Thus,

P[X1 = j ] = δj (2)

P[Xk = i |Xk−1 = j ] = γij , 1 < k ≤ T , i , j ∈ X (3)

where the latter is (a version of) the regular conditional probability



A class of parameter-driven models

Let p(y | x) be a family of kernel density functions (i.e probability
densities in y and measurable in x), where y takes values in the
same set as the Yi s and x ∈ X . We are rather loose on the
measure-theory, but it is ok.

We assume the following parameter-driven model:

X1 → X2 → X3 → · · · → XT

↓ ↓ ↓ · · · ↓
Y1 Y2 Y3 · · · YT

X is unobserved/latent, but the Markov dependence in X induces
(higher-order) dependence in Y . p(y |x) might be a stochastic
matrix when the Yi ’s are discetely-valued (e.g binary or
multinomial data), or a conditional probability (kernel) function.



Statistical estimation in HMMS

On the basis of a sequence of observations y1, . . . , yT

I Filtering: Compute probabilities πt(j) = P[Xt = j |y1:t ]

I Smoothing: Compute probabilities P[Xt = j |y1:T ]

I Estimation: estimate MC dynamics and other unknown
parameters. Let θ be the parameter vector

I MAP estimate: find the most likely (Viterbi) path given the
observations, i.e the mode of the posterior of the states

I Signal reconstruction: simulate paths according to the
posterior distribution of the states

Note that computing the expected path is a trivial collorary of the
solution to the smoothing problem



Joint posterior of the states

For concreteness, although we shall revisit such expressions, note
that the joint probabilities of the unobserved states given observed
data, are obtained via Bayes formula as:

P[X1 = i1,X2 = i2, . . . ,XT = iT |y1:T ]

=
P[X1 = i1,X2 = i2, . . . ,XT = iT ]

∏T
t=1 p(yt | Xt = it)

p(y1, . . . , yT )

∝ P[X1 = i1,X2 = i2, . . . ,XT = iT ]
T∏

t=1

p(yt | Xt = it)

(4)



For the role of HMMs in modelling discrete-valued time-series data
and model comparisons against alternative models (eg MCs on the
observed data, discrete ARMA and models based on thinning) see
e.g [MacDonald and Zucchini, 1997].

Whereas in many (most) parameter driven models exact
implementation of these tasks involve exponential in T
computational cost (due to marginalizations) for HMMs efficient
implementation is possible. The core of the efficient
implementation is dynamic programming. Before proceeding in
providing the solution to the aforementioned problems we give a
different, more general formulation, and show that a variety of
other problems are also a specific instance of this general
formulation.



Change of measure

Let Pt be the joint probabilities of X1:t according to the MC (prior)
law, i.e. Pt(i1, . . . , it) = δi1γi1i2 · · · γit−1it , for t = 1, . . . ,T , ij ∈ X

Let wt(j) ≥ 0, for j ∈ X and t = 1, . . . ,T , and let Qt be a
sequence of probability measures defined by the following change
of measure w.r.t Pt :

dQt

dPt
(X1:t) ∝

t∏
k=1

wk(Xk) (5)

where in this discrete-valued framework it becomes

Qt(i1, . . . , it)

Pt(i1, . . . , it)
=

t∏
k=1

wk(ik) (6)



We define also

Lt = EPt

[
t∏

k=1

wk(Xk)

]
(7)

Lt is the normalizing constant of Qt .

Note that for bounded function f ,

EPt

[
f (Xt)

t∏
k=1

wk(Xk)

]

is a Feynman-Kac formula, see eg [Del Moral and Miclo, 2000].



Generalized framework

Let us now consider the problem of computing marginal
expectations and sampling from the sequence of measures Qt .

I Observation 1: statistical tasks for HMMs (16) are a special
case of this framework: take the weights to be the likelihood
wt(j) = p(yt |Xt = j)

For example, it is clear that the posterior probabilities of the states
(4) are given by QT defined in (5)



In particular:

I Filtering: Compute t-th marginal of Qt

I Smoothing: Compute t-th marginal of QT

I Estimation: Compute LT

I MAP estimate: find the mode of QT

I Signal reconstruction: simulate paths according to QT



Conditional independence

I Observation 2 (loosely stated): If X = (X1, . . . ,XT ) is
distributed according to QT then X is a non-homegenous
Markov chain, i.e this change of measure preserves the
Markov property

In the special case of (9) this can be derived by a standard graph
theory argument: the conditioned process is Markov. Let
Ft = σ(X1, . . . ,Xt).



To see that this is indeed so, note that:

1 Restricted likelihood ratio Let any two measures P and Q
on a space (Ω,F) with density ξ(ω) = dQ/dP, and G be a
sub-σ-algebra. Then the density of the two measures
restricted on the information set G is EP[ξ | G].

Therefore, in our case

dQT

dPT
|Ft =

1

LT
EPT

[
T∏

k=1

wk(Xk) | Ft ] =
1

LT

t∏
k=1

wk(Xk) gt(Xt) (8)

where

gt(Xt) := EPT
[

T∏
k=t+1

wk(Xk) | Ft ] = EPT
[

T∏
k=t+1

wk(Xk) | Xt ] (9)

by the Markov property of PT



2 Bayes theorem The previous result directly yields the
following important collorary for generic Q,P, ξ,G as before
and any integrable random variable X on (Ω,F):

EQ[X | G] =
EP[X ξ | G]

EP[ξ | G]
(10)

Therefore in our case for any Borel A

QT [Xt ∈ A | Ft−1] =
EPT

[1[Xt ∈ A]
∏T

k=1 wk(Xk) | Ft−1]

EPT
[
∏T

k=1 wk(Xk) | Ft−1]

=
ht−1(Xt−1)

gt−1(Xt−1)
= QT [Xt ∈ A | Xt−1]

(11)

due to the conditional independence property of PT , where last
equation follows from same argument as the first.



Hence, by a standard argument (see for example Prop.5.6 of
[Kallenberg, 1997]) we have the conditional independence.

The MC dynamics are given in 2nd equation, where
ht(Xt) := EPT

[1[Xt ∈ A]
∏T

k=t+1 wk(Xk) | Xt ]

All conditioned Markov processes we consider in this lecture are
Markov.



Multitude of problems

I Observation 3: our generic framework (5) encapsulates a wide
variety of problems of discrete probability other than inference
for HMMs

For example:

1 our canonical problem (1) is a special case: take wt = 1 for
any t < T and wT (y) = 1 and wT (u) = 0 for any u 6= y .



2 independent random variables conditioned on their sum: Let
Zi be independent positive discrete random variables, let
St =

∑t
i=1 Zi . We are interested in the probabilities (or

simulation) of each Zi conditionally on the value of ST = k .
However, Xt = (Zt , St) is a MC, and we set wt = 1 for all
t < T , and wT (j , l) = 1 if l = k , and 0 otherwise



3 Computational game theory: efficient computation of the
exponentially weighted average forecaster for the so-called
online shortest path problem; easy to incorporate hard
constraints (by state-space expansion and/or adjustments of
the generator)



Methodology I: dynamic programming

The methodology we use to solve the various problems of interest
is inspired by a dynamic programming approach for optimization of
chain-structured objective functions with discrete-valued inputs.
What we describe below is a generic scheme, and in our context
solves directly the MAP problem. However, the simulation
techniques are also elaborations of this idea. For a short
description see S.2.4 of [Liu, 2008].



Minimization

Let xt ∈ X = {1, . . . , d} and the objective function have a chain
structure

HT (x) =
T−1∑
t=1

ht(xt , xt+1) (12)

hence it is a sum of terms which involve functions of pairs, and
note we have no loops. In general a naive optimization of a
function of T discrete-valued inputs by enumeration has
computational cost exponentially large in T . The particular
(Markovian in a sense) structure allows us to do much better.



Let
c1(j) = min

i
h1(i , j) (13)

and for t > 1
ct(j) = min

i
{ct−1(i) + ht(i , j)} (14)

It should be clear that minj cT−1(j) yields the minimum of HT (e.g
consider T = 2). However, the significant advantage of the
formulation is computational: O(Td2)

Hence, a forward computation yields the minimum of HT . To find
the minimizer we need to run a backward computation



Let
x̂T = arg min

j
cT−1(j)

no other value of the last argument can yield a smaller value for
the objective function.

Similarly, for t < T , let

x̂t = arg min
j
{ct−1(j) + ht(j , x̂t+1)}

Derivation of the x̂ = (x̂1, . . . , x̂T ) can be done at O(Td) cost

It should be clear that x̂ = arg minx HT (x) and it can be obtained
at O(Td2) cost



Viterbi path

Recall that it is the mode of QT . Writing the density of QT w.r.t
the counting measure,

qT (x1, . . . , xT ) =
1

LT
δx1

T−1∏
t=1

γxt ,xt+1

T∏
t=1

wt(xt) (15)

the Viterbi path is the minimizer of the negative log-density
(energy), i.e

− log

{
δx1

T−1∏
t=1

γxt ,xt+1

T∏
t=1

wt(xt)

}
=

T−1∑
t=1

ht(xt , xt+1) (16)

therefore the dynamic programming yields the Viterbi path



Filtering

We will construct similar recursions to (14) for the evolution of the
filtering probabilities, πt , which recall that can be thought as the
probabilities of Xt given y1:t in the HMM (9), or the t-th marginal
of Qt in (5).

The same filtering recursion can be derived in various ways, e.g: i)
sparce linear algebra: re-arrangment of the sum(integral) of (15)
ii) Bayesian“elementary” calculation for HMMs (9) using regular
conditional probability and conditional independence, iii) using the
change of measure and the generalized Bayes formula (10)

All variants rely on a marginalization step which one way or
another is a version of Fubini’s theorem. ii) and iii) extend easily
to other contexts, iii) being a more formal version of ii). We can
identify iii) with the so-called reference probability approach, for a
book-length description see [Elliott et al., 1995]



For pegagogical reasons (but also to give a perspective of different
approaches in the literature) I will demonstrate the recursion with
all three ways mentioned above (rather quickly):

filtering recursion

πt(j) =
Lt−1

Lt

∑
i

πt−1(i)γi ,jwt(j) (17)

hence all filtering probabilities are obtained at a O(Td2)



Algebraic derivation

Approach common in engineering literature. We are interested in
the t-th marginal of Qt , see [MacDonald and Zucchini, 1997].
Based on the Legesgue density (15):

πt(j) = Qt [∪{(i1, . . . , it−1, j)}] =
∑

i1,...,it−1

qt(i1, . . . , it−1, j)

=
1

Lt

∑
i1,...,it−1

δi1

t−2∏
k=1

γik ,ik+1

t−1∏
k=1

wk(ik)γit−1,jwt(j)

=
Lt−1

Lt

∑
i

πt−1(i)γi ,jwt(j)

We can put this in matrix form for the flow of πt



Bayesian calculation

Approach common in statistical non-linear filtering. We
concentrate on the HMM case (9), e.g [Gordon et al., 1993]

πt(j) = P[Xt = j | y1:t ] =
∑

i

P[Xt = j ,Xt−1 = i | y1:t ]

=
∑

i

p(yt | Xt = i)P(Xt = j | Xt−1 = j)P[Xt−1 = i | y1:t−1]

p(yt | y1:t−1)

=
Lt−1

Lt

∑
i

wt(j)γi ,jπt−1(i)



Change of measure

Approach inspired by stochastic analysis approaches to
continuous-time filtering, see [Elliott et al., 1995] . Let
(X1, . . . ,Xt) ∼ Qt in (5).



By (10):

πt(j) = EQt [1[Xt = j ]] =
1

Lt
EPt

[
1[Xt = j ]

t∏
i=1

wi (Xi )

]

=
1

Lt
EPt

[
t−1∏
i=1

wi (Xi ) EPt [1[Xt = j ]wt(Xt) | Ft−1]

]

=
1

Lt
EPt

[
t−1∏
i=1

wi (Xi ) EPt [1[Xt = j ]wt(Xt) | Xt−1]

]

=
1

Lt
EPt

[
t−1∏
i=1

wi (Xi ) wt(j)EPt [1[Xt = j ] | Xt−1]

]

=
1

Lt
EPt

[
t−1∏
i=1

wi (Xi ) wt(j)γXt−1,j

]
=

1

Lt
EPt−1

[
t−1∏
i=1

wi (Xi ) wt(j)γXt−1,j

]

=
Lt−1

Lt
EQt−1

[
wt(j)γXt−1,j

]
=

Lt−1

Lt

∑
i

wt(j)γi ,jπt−1(i)



Smoothing

We are interested in the t-th marginal of QT :
φt(j) = P[Xt = j |y1:T ]. We will present the Bayesian calculation
but the other approaches can be used

P[Xt = j |y1:T ] ∝ P[yt+1:T | Xt = j ]︸ ︷︷ ︸ × P[Xt = j | y1:t ]︸ ︷︷ ︸
backward φt(j) forward πt(j)

Note that

φT−1(j) = p(yT | XT−1 = j) =
∑

i

wT (i)γj ,i (18)

φt(j) =
∑

i

p(yt:T ,Xt = i | Xt−1 = j) =
∑

i

φt+1(i)wt(i)γj ,i

hence at O(Td2) we obtain the backward equations and hence the
smoothing probabilities



Reconstruction

Simulation of X = (X1 . . . ,XT ) ∼ QT . This is precisely our
original problem: simulation of (class of) conditioned Markov
processes

We do not need both forward and backward filters for this. Either
is enough. Suppose we have computed the forward filter. Then

XT ∼ πT (T -th marginal of QT )

P[Xt = j | y1:T ,Xt+1 = i ] ∝ P[yt+1:T ,Xt+1 = i | Xt = j , y1:t ]

× P[Xt = j | y1:t ]

∝ γj ,iπt(j)



Likelihood computation

For generic parameter-driven problems is an exponentially hard
problem:

LT =
∑

i1,...,iT

pT (i1, . . . , iT )
∏
j

w(ij)

I Same techniques developed above compute it at O(Td2)

I Direct optimization (e.g Nelder-Mead) or EM algorithm for
parameter estimation. Stories...



Part II: Conditioned Markov Jump Processes (MJPs)

We now consider continuous-time discrete state-space MCs,
sometimes called MJPs. Unlike the discrete case I will not present
the most general setup where the mathematics are explicit, instead
I will consider a natural extension of the previous framework where
the observations are noisy versions of the signal, but the latter
evolves continuously in time.

Additionally, unlike HMMs I will only try to obtain a mathematical
description of the conditioned process and mention how simulation
can be done.

Effectively, this second part (as the final third part) focuses on the
canonical problem (1)



MJP

Again for simplicity we consider a time-homegeneous signal
(although again conditioning will yield a time-inhomeneous
process), X = (Xt , t ≥ 0), with state-space X = {1, . . . , d}. The
process is characterized by its generator Q, which in this case is a
d × d matrix with elements Qij ≥ 0 for j 6= i and
Qii = −

∑
j 6=i Qi ,j .

Let pi ,j(t) = P[Xt = j | X0 = i ]. Then for small ∆

pi ,j(∆) ≈ 1[i = j ] + ∆Qi ,j

The constraint of Q implies a sum-to-1 constraint on p. Let also δ
be the initial distribution



Master Equation/Kolmogorov forward equation
Let pi (t) = P[Xt = i ]. Then, (for example) by a conditioning
argument we get

pj(t+∆) =
∑

i

pi (t)pi ,j(∆) ≈ pj(t)

1−∆
∑
j 6=i

Qj ,i

+∆
∑
j 6=i

Qi ,jpi (t)

where by taking limits we get the so-called Master Equation or
KFE for the flow of marginal probabilities, or effectively for the
transition density,

∂pj(t)/∂t =
∑
j 6=i

(−Qj ,ipj(t) + Qi ,jpi (t))

or in matrix form the system of ODEs

∂p(t)/∂t = Qp

Note that s → p(s) is a continuous map



Partial observations

Consider a sequence of times (chosen indpendently of X )
0 ≤ t1, . . . , tn ≤ T , and conditionally independent observations
yi , i = 1, . . . , n with p(yi | Xti = j)

I Skeleton dynamics: our HMM solution directly gives us the
dynamics of the conditioned skeleton (Xt1 ,Xt2 , . . . ,Xtn).

I From a simulation perspective we expect the complicated part
to be to generate the MJP bridge

I The conditioned process is also an MJP

In the next couple of slides we will give the mathematical
description of X given y1:n (i.e filter and smoother). We will see
that they follow same lines as the discrete-time case with ODEs
replacing recursions. I will follow a Bayesian calculation approach
to derive expressions. Then I will comment on the simulation
(reconstruction).



Filter

Let y[0,t] denote all available observations in [0, t], and let
πi (t) = P[Xt = i | y[0,t]]. Clearly, πi (s) = pi (s) for all s < t1. On
the other hand

πi (t1) ∝ pi (t1)p(y1 | Xt1 = i)

hence the flow of filtering probabilities has a right discontinuity at
t1. Hence, π(s) solves the master equation as p(s) for all s < t1

(and the same initial condition) and has a jump at t1. The same
argument shows that on [t1, t2) π(s) solves the master equation
with an updated initial condition.



Smoother

One approach is to work as before by treating separately each term
of Bayes formula. We show this below.

P[Xs = i | y1:n] = P[Xs = i | y[0,s], y(s,T ]]

∝ P[y(s,T ] | Xs = i ]πi (s)

Let φi (t) = P[y(t,T ] | Xt = i ]. By conditioning argument we get
for tn−1 < t ≤ tn



φi (t) =
∑

j

p(yn,Xt+∆ = j | Xt = i ]

=
∑

j

φj(t + ∆)pi ,j(∆)

≈ φi (t + ∆)(1−∆
∑
i 6=j

Qi ,j) +
∑
j 6=i

φj(t + ∆)∆ Qi ,j

hence
∂φi (t)/∂t =

∑
j 6=i

Qi ,j(φi (t)− φj(t))

with initial condition φtn(i) = p(yn | Xtn = i). Then φi (t) is
right-continuous and
limt↓tn−1 φi (tn−1) = limt↓tn−1 φi (t)p(yn−1 | Xtn−1 = i)



Smoothed rates
The conditioned MJP we consider are also MJPs with modified
generator. Again a Bayesian calculation (and right-continuity of φ)
gives

P[Xt+∆ = j | Xt = i , y1:n] = P[Xt+∆ = j | Xt = i , y[0,t], y(t,T ]]

=
P[Xt+∆ = j ,Xt = i , y[0,t], y(t,T ]]

P[Xt = i , y[0,t], y(t,T ]]

=
pi ,j(∆)πi (t)φj(t + ∆)

πi (t)φi (t)

≈ ∆Qi ,j
φj(t)

φi (t)
for j 6= i

which shows that the conditioned process is a non-homogenous
MJP with rate function

Qi ,j(t) = Qi ,j
φj(t)

φi (t)
(19)



Note that the transition density of this MJP are the smoothing
probabilities, hence we can get ODEs for them from the
corresponding master equation.



Variational derivations

For discrete-time HMM we saw a variety of approaches to derive
recursions and to characterize the conditioned process. For MJPs
(and also for diffusion processes considered later) there is a really
neat argument due to Manfred Opper, see for example
[Opper and Sanguinetti, 2008].

Idea is to compute the KL divergence between a measure on the
path space and the posterior law of X on the path space, and
minimize this distance over the class of MJPs using constrained
calculus of variation. Since the true posterior process is an MJP we
get the exact dynamics. Motivation



Simulation of conditioned MJPs

My impression is that the literature is rather incomplete on the
exact solution of (1). I am aware of the very interesting
[Fearnhead and Sherlock, 2006], based on thinning of Poisson
processes. Suggested references most welcome



Part III: conditioned diffusion processes

We move to certain class of continuous time and space Markov
processes. We model d-dimensional stochastic process X ∈ Rd as
the solution of an SDE of the type:

dXs = b(s,Xs ; θ) ds + σ(s,Xs ; θ) dBs , s ∈ [0,T ] ; (20)

B is an m-dimensional standard Brownian motion,
b(·, ·) : R+ × Rd → Rd is the drift, σ(·, · ) : R+ × Rd → Rd×m is
the diffusion coefficient. The initial point V0 can be taken as fixed
or elicited with a distribution, depending on the context. Also let

Γ = σσ∗

We assume that coefficients are sufficiently regular so that (20)
has a unique weak non-explosive solution



Simulation of diffusions

Compared to the previous problems this is much harder. Any path
X is now a really infinite-dimensional object with no obvious sparse
representation (as for example an MJP). Hence, it is both exact
and efficient that are under serious scrutiny. Recent advances, e.g
[Beskos et al., 2006], have shown the at first remarkable possibility
of doing both exact and efficient simulation of unconditioned
diffusions. Exact (but inefficient) simulation of conditioned
diffusions is also possible.



Diffusion bridges

We are interested in (1). The theory of h-transforms, see for
example Chapter IV.39 [Rogers and Williams, 2000], allows us to
derive its SDE:

dXs = b̃(s,Xs) ds + σ(s,Xs) dBs , s ∈ [0,T ] ,X0 = u;

b̃(s, u) = b(s, x) + [σσ∗](s, x)∇x log ps,T (x , v) (21)

I the local characteristics of the unconditioned and conditioned
processes are the same

I the drift of the conditioned process includes an extra term
which forces the process to hit v at time T . Note the
similarity to (19)

I (21) is typically intractable since the drift is expressed in
terms of the transition density (which we need as a function
of the starting point)



Outline

The target conditioned process has intractable dynamics. Our
strategy (which to a large extent is the state-of-the-art in this
problem) will be to use importance sampling (IS) whereby we
propose paths from another tractable process and weight
accordingly. Hence, The development is again based on a change
of measure. However, the simulation will be also based on a
change of measure by means of importance/rejection sampling.

I Identify valid and tractable proposals

I Work out the likelihood ratio and turn on the IS machine



Importance sampling

Importance sampling (IS) is a classic Monte Carlo technique for
obtaining samples from a probability measure P using samples
from another probability measure Q, see for example Chapter 2.5
of [Liu, 2008] for an introduction. Mathematically it is based on
the concept of change of measure.



Suppose that P is absolutely continuous with respect to Q with
Radon-Nikodym density f (x) = P(dx)/Q(dx). Then, in its
simplest form IS consists of constructing a set of weighted particles
(xi ,wi ), i = 1, . . . ,N, where xi ∼ Q, and wi = f (xi ). This set
gives a Monte Carlo approximation of P, in the sense that for
suitably integrable functions g , we have that∑N

i=1 g(xi )wi

N
. (22)

is an unbiased and consistent estimator of

EP[g ] :=

∫
g(x)P(dx) .



IS can be cast in much more general terms, an extension
particularly attractive in the context of stochastic processes. First,
note that in most applications f is known only up to a normalising
constant, f (x) = cfu(x), where only fu can be evaluated and

c = EQ[fu] . (23)

The notion of a properly weighted sample refers to a set of
weighted particles (xi ,wi ), where xi ∼ Q and wi is an unbiased
estimator of fu(xi ), that is

EQ[wi | xi ] = fu(xi ) .

Then for any integrable g

EQ[gw ] = EP[g ] EQ[w ] . (24)



Rearranging the expression we find that a consistent estimator of
EP[g ] is given by ∑N

i=1 g(xi )wi∑N
i=1 wi

. (25)

When wi is an unbiased estimator of f (xi ) we have the option of
using (22), thus yielding an unbiased estimator. However, (25) is a
feasible estimator when c is unknown.

Although the first moment of w (under Q) exists by construction,
the same is not true for its second moment. Hence it is a minimal
requirement of a “good” proposal distribution Q that
EQ[w 2] <∞. In this case, and using the Delta method for ratio of
averages it can be shown that (25) is often preferable to (22) in a
mean square error sense because the denominator acts effectively
as a control variable.



IS includes exact simulation as a special case when Q = P. Another
special case is rejection sampling (RS), which assumes further that
fu(x) is bounded in x by some calculable K <∞. Then, if we
accept each draw xi with probability fu(xi )/K , the resulting sample
(of random size) consists of independent draws from P. This is a
special case of the generalised IS where wi is a binary 0-1 random
variable taking the value 1 with probability fu(xi )/K .



IS for diffusions

For the sake of simplicity we consider the simplest case where
d = 1, the process is time-homogenous and σ = 1:

dXs = b(Xs)ds + dBs s ∈ [0,T ] ,X0 = u;

Recall that out ultimate target is to simulate from X given also
XT = v . For the general case see for example
[Papaspiliopoulos and Roberts, 2009]

Our main tool will be an expression for the likelihood ratio of
unconditional Itô processes



Girsanov’s theorem

Let Pb and P0 be the probability laws implied by the (20) with
drift b and 0 (i.e the Brownian motion) respectively. Then, under
certain conditions Pb and P0 are equivalent with density
(continuous time likelihood) on Ft = σ(Xs , s ≤ t), t ≤ T , given by

ξ =
dPb

dP0

∣∣∣∣
t

= exp

{∫ t

0
b(Xs)dXs −

1

2

∫ t

0
b2(Xs)ds

}
. (26)

Think of this as the ratio of probabilities that a given paths has
been generated by the diffusion relative to have been generated by
the BM. Note that a naive way to simulate X unconditionally
would be to simulate X under P0 and weight by (30). This still
raises the issue of doing it exactly. But what about the process
conditioned on the end point XT = v?



Change of measure for conditioned processes

Let P∗b and P∗0 denote the laws of the corresponding diffusion
bridges conditioned on XT = v . P∗0 generates a nice, tractable,
Gaussian process, the Brownian bridge

Also let p0,T (u, v) and G0,T (u, v) denote the transition densities of
the two processes, the latter simply being a Gaussian density, the
former being intractable.

What can we say about the density between P∗b and P∗0? If we had
that then we could switch the IS on...



However, we already know how to do get it: see (30). Let
G = σ(X0,XT ) then, from one side we have that

dPb

dP0
|G =

p0,T (u, v)

G0,T (u, v)
(27)

but from the other
dPb

dP0
|G = EP∗0 [ξ] (28)

and from (10) we get that

dP∗b
dP∗0

=
ξ

EP∗0 [ξ]
=
G0,T (u, v)

p0,T (u, v)
ξ (29)

Therefore, at least approximately we can do IS...Can we do better?



Exact Simulation of Diffusion Bridges

Apart from Girsanov’s theorem, another valueable tool is at hand,
Itô’s Lemma. This allows us to do integration by parts and simplify
ξ in (30). Let B(x)′ = b(x), and assume that b is integrable then

log ξ =

∫ t

0
b(Xs)dXs −

1

2

∫ t

0
b2(Xs)ds .

= B(XT )− B(X0)−
∫ t

0

1

2
(b2 + b′)(Xs)ds

(30)

Assume now that −∞ < ` < (b2 + b′)/2 < `+ r <∞. Then
define

φ(u) = ((b2 + b′)/2− `)/r (31)



Simulating an event of equal probability

Hence putting everything together we get that

dP∗b
dP∗0

∝ ξ ∝ exp

{
−r

∫ T

0
φ(Xs)ds

}
≤ 1 (32)

Theorem
Let Φ be a homogeneous Poisson process of intensity r on
[0,T ]× [0, 1] and N is the number of points of Φ below the graph
s 7→ φ(Xs), s ∈ [0,T ], then:

P [ N = 0 |X ] = exp

{
−r

∫ T

0
φ(Xs)ds

}
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Idealized rejection sampler

1. Simulate X ∼ P∗0
2. Simulate a Po (r) process Φ = {z1, z2, . . . , zκ},

zj = (zj ,1, zj ,2), zj ,1 ∈ [0, t], zj ,2 ∈ [0, 1], 1 ≤ j ≤ κ
3. Compute the acceptance indicator I:

I :=
κ∏

j=1

I
[
φ(Xzj,1) < zj ,2

]
4. If I = 1 accept X, otherwise return to 1 and

retry.



Retrospective Exact Simulation

1. Simulate Φ = {z1, z2, . . . , zκ}
2. Simulate the values of X ∼ P∗0, at the time

instances zj ,1, 1 ≤ j ≤ κ, therefore:

S(X ) = {(0, x), (z1,1,Xz1,1), . . . , (zκ,1,Xzκ,1), (t, y)}

3. Compute the acceptance indicator I.

4. If I = 1 then accept and return the proposed
skeleton S(X ); otherwise return to 1 and retry.
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