

A Semi-Markov model for interval-censored data

Venediktos Kapetanakis¹, Ardo van den Hout, Fiona E Matthews MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK

¹E-mail: venediktos.kapetanakis@mrc-bsu.cam.ac.uk

A Semi-Markov model for interval-censored data

Overview

- 1. Background Information.
- Statistical Methods.
 Method A: Integration.
 Method B: Multiple Imputation.
- 3. Results.
- 4. Discussion & Future work.

- Multi-state modelling
- Stroke
- Aims

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Background Information

Multi-state modelling

Background Information

- Multi-state modelling
- Stroke
- Aims

Statistical Methods

Method A

Method B

Results

- Discussion
- & Future work

Acknowledgements

Multi-state modelling is a method of analysing longitudinal data when the observed outcome is a categorical variable.

- Useful in medical applications where the levels of a disease can be regarded as the states of the model (*Kalbfleisch & Lawless, 1985; Commenges, 1999*).
- A common assumption is that the data satisfy the first order Markov assumption under which the transition to the next state depends only on the current state, i.e. the history of the process is ignored.
- This assumption may often be inappropriate.

Information about stroke

Background Information

Multi-state modelling

- Stroke
- Aims

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

- A stroke is the loss of brain function as a result of a disorder in the blood supply to the brain.
- Non-fatal stroke may cause permanent neurological damage and adult disability.
- It is one of the leading causes of death worldwide.

MRC Biostatistics Unit

Aims

Background Information

- Multi-state modelling
- Stroke
- Aims
- Statistical Methods

Method A

Method B

Results

- Discussion
- & Future work

Acknowledgements

• Investigate the transition intensities in the three-state model:

• Relax the Markov assumption by adjusting the transition intensity from state 2 to state 3 for the time spent in state 2.

Method A: Integrate out all possible times for the transition from state 1 to state 2 in the estimation of the likelihood for every individual.

Method B: Estimate the unknown transition time from state 1 to state 2.

Statistical Methods

- Data source
- Primary outcome
- Model specification
- Data patterns

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Statistical Methods

Data source

Background Information

Statistical Methods

- Data source
- Primary outcome
- Model specification

• Data patterns

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

- We used data from the UK Medical Research Council Cognitive Function and Ageing Study¹.
- 2321 individuals aged 65 and above had up to 9 interviews from 1991 to date where they were asked if they had any previous history of stroke.

¹www.cfas.ac.uk

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 8 / 35

Primary outcome

Background Information

Statistical Methods

- Data source
- Primary outcome
- Model specification
- Data patterns

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

• Our primary outcome was a categorical variable with three levels:

• Observed number of transitions:

	To:	Healthy	Stroke	Dead	Censored	Total
From:	Healthy Stroke	2966 0	113 304	1331 224	711 55	5121 583
	Total	2966	417	1555	766	5704

Model specification

Background Information

Statistical Methods

- Data source
- Primary outcome
- Model specification
- Data patterns

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

We used these data to fit the three-state Semi-Markov model, bellow:

 $log(q_{1s}) = b_0^{1s} + b_1^{1s}(age) + b_2^{1s}(male) + b_3^{1s}(education)$ $+ b_4^{1s}(current smoker), s = 2 \text{ or } 3$

$$\begin{split} \log(q_{23}) &= b_0^{23} &+ b_1^{23}(\text{age}) + b_2^{23}(\text{male}) + b_3^{23}(\text{education}) \\ &+ b_4^{23}(\text{current smoker}) + b_5^{23}(\text{time spent in state 2}) \end{split}$$

Venediktos Kapetanakis

Observed data patterns

Background Information

Statistical Methods

• Data source

• Primary outcome

- Model specific
- Data patte

iniotinodi / t
Method B
Results
Discussion

& Future we

Acknowledg

Without loss of generality we may assume that the observed data patterns can be summarised by the following table:

Model specification Data patterns	Data		Observed states						
Method A	patterns	First	Intermediate	Last					
Method B									
esults	Α	1	2	death					
scussion Future work	В	1	2	censored					
knowledgements	С	1	1	death					
	D	1	1	censored					
	E	2	2	death					
	F	2	2	censored					

Observed data patterns

Background Information

Statistical Methods

Data source

• Primary outcome

- Model specification
- Data patterns
- Method A
- Results
- Discussion
- & Future work

Acknowledgements

Without loss of generality we may assume that the observed data patterns can be summarised by the following table:

Data	_	Observed states					
patterns		First		Intermediate		Last	
Α		1	*	2		death	
В		1	*	2		censored	
С		1		1	?	death	
D		1		1	?	censored	
E	*	2		2		death	
F	*	2		2		censored	

* : Transition from state 1 to state 2.

? : Possible transition from state 1 to state 2.

Statistical Methods

Method A

• Transition patterns

• Likelihood

contributions

• Piecewise-constant approach

Method B

Results

Discussion

& Future work

Acknowledgements

Method A

Transition patterns

Venediktos Kapetanakis

MRC Biostatistics Unit

Two three-state Markov models for interval-censored data - slide 13 / 35

MRC BIOSTATISTICS UNIT UNIVERSITY OF CAMBRIDGE

Pattern A

$$L_A = \int_0^{A_{20} - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} f(A_N - A_{1N} - z; q_{23}) \pi_{23} dz$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 14 / 35

Likelihood contributions (Pattern D)

Pattern D

MRC Biostatistics Unit UNIVERSITY OF CAMBRIDGE

$$L_D = \int_0^{A_N - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} [1 - F(A_N - A_{1N} - z; q_{23})] dz + [1 - F(A_N - A_0; q_{12} + q_{23})]$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 15 / 35

Likelihood contributions (Pattern D)

Pattern D

MRC Biostatistics Unit UNIVERSITY OF CAMBRIDGE

$$L_D = \int_0^{A_N - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} [1 - F(A_N - A_{1N} - z; q_{23})] dz + [1 - F(A_N - A_0; q_{12} + q_{23})]$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 15 / 35

MRC Biostatistics Unit UNIVERSITY OF CAMBRIDGE	Piecewise-constant approach (1)
Background Information Statistical Methods	
Method A Transition patterns Likelihood contributions Piecewise-constant approach	A_0
Method B	 We needed to calculate:
Results Discussion & Future work	$f(A^* - A_0; q_{12} + q_{13})$
Acknowledgements	

-• A*

1		
MRC Biostatistics Unit	Piecewise-constant approach (2)	
Background Information		
Statistical Methods		
Method A		
 Transition patterns Likelihood contributions Piecewise-constant approach 	A_L	A_U
Method B	 Generally, we needed to calculate: 	
Populto		
Discussion		
& Future work	$f(A_U - A_L; Q)$	
Acknowledgements	$1 - F(A_U - A_L; Q)$	

Statistical Methods

Method A

- Transition patterns
- Likelihood

contributions

• Piecewise-constant approach

Method B

```
Results
```

Discussion

& Future work

Acknowledgements

Piecewise-constant approach (3)

- We specified the resolution, *h*, for the piecewise-constant approach.
- We split the interval into k subintervals of length h so that: $(A_U - A_L) - kh = l \le h.$

Piecewise-constant approach (3)

Background Information

Statistical Methods

Method A

- Transition patterns
- Likelihood

contributions

• Piecewise-constant approach

Method B

```
Results
```

Discussion

& Future work

Acknowledgements

- We specified the resolution, *h*, for the piecewise-constant approach.
- We split the interval into k subintervals of length h so that: $(A_U - A_L) - kh = l < h.$
- In every subinterval, we evaluated the transition intensities $Q({\rm Age})$ at:

Age = age at the left subinterval limit

MRC Biostatistics Unit

Piecewise-constant approach (4)

Background Information

Statistical Methods

Method A

• Transition patterns

• Likelihood

contributions

• Piecewise-constant approach

Method B

Results

Discussion

& Future work

Acknowledgements

• We obtained:

$$f(A_U - A_L; Q) = \left\{ \prod_{i=0}^{k-1} \left[1 - F(h; Q(A_L + ih)) \right] \right\} f(l; Q(A_L + kh))$$
$$1 - F(A_U - A_L; Q) = \left\{ \prod_{i=0}^{k-1} \left[1 - F(h; Q(A_L + ih)) \right] \right\} \left[1 - F(l; Q(A_L + kh)) \right]$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 19 / 35

Statistical Methods

Method A

Method B

• Data patterns

• Interval regression

• Multiple imputation

Results

Discussion

& Future work

Acknowledgements

Method B

Observed data patterns

Background Information	Data Observed states						
Statistical Methods	patterns		First	1	Intermediate		Last
Method A							
Method B	Α		1	*	2		death
Data patterns	B		1	*	2		censored
 Interval regression Multiple imputation 	b						Cerisorea
Results	С		1		1	?	death
Discussion & Future work	D		1		1	?	censored
Acknowledgements	E	*	2		2		death
	F	*	2		2		censored

- * : Transition from state 1 to state 2.
- ? : Possible transition from state 1 to state 2.

Estimation of the exact transition time (1)

Background Information

Statistical Methods

Method A

Method B

- Data patterns
- Interval regression
- Multiple imputation

Results

Discussion

& Future work

Acknowledgements

- We fit an interval regression model for age at the transition time, A*, adjusted for several covariates using data from patterns A, B, E and F:
 - age at baseline

○ sex

- education status
- \circ smoking
- o data pattern
- $\circ\,$ observed sojourn time in state 2
- $\circ\,$ the interaction of the last two

Estimation of the exact transition time (2)

Background Information

Statistical Methods

Method A

Method B

- Data patterns
- Interval regression
- Multiple imputation

Results

Discussion

& Future work

Acknowledgements

- Using mean and variance estimates conditional on the covariate specifications of a single individual, we assumed normality to find the density of A^* , $f(a^*)$ for that specific individual.
- We obtained $f(a^*|a^* \in I) = \frac{f(a^*)}{\mathbb{P}(a^* \in I)} ,$

where I was the interval within which the transition from state 1 to state 2 occurred.

Multiple imputation

Background Information

Statistical Methods

Method A

Method B

- Data patterns
- Interval regression
- Multiple imputation

Results

Discussion

& Future work

- 100 values were imputed from f(a^{*}|a^{*} ∈ I), producing 100 imputed data sets in which the computation of the time spent in state 2 was straightforward.
- For each data set we fit the multi-state model:

• Results were combined using Rubin's multiple imputation rules (*Rubin, 1987*).

Statistical Methods

Method A

Method B

Results

- Method A Results
- Method B
 Transition time
- Method B Results
- Methods Comparison

Discussion

& Future work

Acknowledgements

Results

Method A	Coefficient	Mea	n (S.E.)	
Age	b_1^{12}	0.105	(0.007) *	
(years)	b_1^{13}	0.166	(0.004) *	
	b_1^{23}	0.104	(0.009) *	
Sex	b_2^{12}	0.437	(0.129) *	
(males versus females)	b_2^{13}	0.414	(0.070) *	
	b_2^{23}	0.457	(0.142) *	
Education	b_3^{12}	-0.300	(0.153) [*]	
(10 years or more)	b_3^{13}	-0.226	(0.077) *	
	b_3^{23}	0.202	(0.167)	
Smoking	b_4^{12}	0.336	(0.129) *	
(current versus never/ex)	b_4^{13}	0.538	(0.069) *	
	b_4^{23}	0.372	(0.139) *	
Time spent in State 2 (years)	b_5^{23}	-0.004	(0.013)	\leftarrow p-value = 0.78

Two three-state Markov models for interval-censored data – slide 26 / 35

Relative imputed time of onset of state 2 (1)

Distribution of the relative imputed time for the transition from state 1 to

Background Information

Statistical Methods

Method A

Method B

Results

- Method A Results
- Method B Transition time
- Method B Results
- Methods Comparison

Discussion

& Future work

Acknowledgements

state 2 within I, by data pattern.

- In pattern A, the unknown transition seems more likely to take place closer to the interval limits.
- In pattern B, the distribution is skewed to the left (p < 0.001).
- In patterns E and F, the unknown transition seems to be uniformly distributed within the interval.

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data – slide 27 / 35 $\,$

Transition time

• Methods Comparison

Statistical Methods

Method A

Method B

 Results
 Method A Results
 Method B

Method B

Discussion & Future work

Results

Acknowledgements

Relative imputed time of onset of state 2 (2)

Distribution of the *length* of the interval (in months) within which the transition from state 1 to state 2 could happen:

	Ν	Min	Q_1	Median	Q_3	Max
Pattern A	76	1	22	24	60	104
Pattern B	37	12	24	88	96	119

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 28 / 35

Method B	Coefficient	Mean (S.E.)		
Age	b_1^{12}	0.071	(0.003) *	
(years)	b_1^{13}	0.123	(0.003) *	
	b_1^{23}	0.090	(0.005) *	
Sex	b_2^{12}	0.257	(0.126) *	
(males versus females)	b_2^{13}	0.323	(0.080) *	
	b_2^{23}	0.309	(0.123) *	
Education	b_3^{12}	-0.275	(0.152) †	
(10 years or more)	b_3^{13}	-0.240	(0.090) *	
	b_3^{23}	0.110	(0.146)	
Smoking	b_4^{12}	0.352	(0.126) *	Wald test taking into account the multiple
(current versus never/ex)	b_4^{13}	0.487	(0.078) *	imputation (Reiter &
	b_4^{23}	0.389	(0.124) *	Raghunathan, 2007)
Time spent in State 2 (years)	b_5^{23}	-0.001	(0.0005) *	← p-value = 0.02

Covariate	Coefficient	Method A Mean (S.E.)	Method B Mean (S.E.)
Age	b_1^{12}	0.105 (0.007) *	0.071 (0.003) *
(years)	b_1^{13}	0.166 (0.004) *	0.123 (0.003) *
	b_1^{23}	0.104 (0.009) *	0.090 (0.005) *
Sex	b_2^{12}	0.437 (0.129) *	0.257 (0.126) *
(males versus females)	b_2^{13}	0.414 (0.070) *	0.323 (0.080) *
	b_2^{23}	0.457 (0.142) *	0.309 (0.123) *
Education	b_{3}^{12}	-0.300 (0.153)[*]	-0.275 (0.152) †
(10 years or more)	b_3^{13}	-0.226 (0.077) *	-0.240 (0.090) *
	b_3^{23}	0.202 (0.167)	0.110 (0.146)
Smoking	b_{4}^{12}	0.336 (0.129) *	0.352 (0.126) *
(current versus never/ex)	b_4^{13}	0.538 (0.069) *	0.487 (0.078) *
	b_4^{23}	0.372 (0.139) *	0.389 (0.124) *
Time spent in State 2 (years)	b_5^{23}	-0.004 (0.013)	-0.001 (0.0005) *

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 30 / 35

Statistical Methods

Method A

Method B

Results

Discussion

- & Future work
- Conclusions
- Extensions

Acknowledgements

Discussion & Future work

Conclusions

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

- & Future work
- Conclusions
- Extensions

Acknowledgements

- Semi-Markov models that incorporate history of the process may improve inference when the Markov assumption is inappropriate.
- Assuming that the unknown transition time from state 1 to state 2 occurs midway *may* be inappropriate for interval-censored data.

Extensions and work in progress

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

- & Future work
- Conclusions
- Extensions
- Acknowledgements

- In Method B, adjust for possible unobserved $1 \rightarrow 2$ transitions in patterns C and D:
 - Simulate state at the time just before death or at censoring using Bernoulli trials.
 - If the simulated state is state 2, impute age at the transition time using interval regression.
- Sensitivity analysis for the age where everyone is assumed to be healthy.
- Run a simulation study to compare:
 - The more theoretical model (Method A).
 - The model where the transition time is imputed using interval regression (Method B).
 - The model where the transition time is assumed to occur midway.

Acknowledgements

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

- We would like to thank all study participants and their relatives for their invaluable contribution.
- Funding source: MRC CFAS¹ is funded by the UK Medical Research Council.

¹www.cfas.ac.uk

Venediktos Kapetanakis

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Thank you!

Thank you!

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 35 / 35

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Extra Material

- Markov models
- Data patterns
- Likelihood

contributions

- Interval regression (1)
- Interval regression (2)
- References

Extra Material

Markov models

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Extra Material

- Markov models
- Data patterns

Likelihood

contributions

- Interval regression (1)
- Interval regression (2)
 References

- Homogeneous Markov model: $q_{rs} = q_{rs}$ for all t.
- Non-homogeneous Markov model: $q_{rs} = q_{rs}(t)$.

• Semi-Markov model: $q_{rs} = q_{rs}(\tau)$ where τ is the time spent in the present state.

• Partial-Markov model: $q_{rs} = q_{rs}(\mathbf{z}_s)$ where \mathbf{z}_s is a multivariate predictable process with components which may be stochastic or deterministic.

Observed data patterns

Background Information

Statistical Methods

Method A

Without loss of generality we may assume that the observed data patterns can be summarised by the following table:

Method B	Data	Ν		Observed states				
Results			-					
Discussion	patterns			First	I	ntermediate		Last
& Future work								
Acknowledgements	Α	76		1	*	2		death
Extra Material	B	37		1	*	2		censored
 Markov models 		01						001100100
Data patterns	C	1221		1		1	2	dooth
Likelihood	C	1331		I		I	f	uealli
contributions	D	711		1		1	?	censored
 Interval regression (1) 	_							
 Interval regression (2) 	-	4.40		0		0		
References	E	148	*	2		2		death
	F	18	*	2		2		censored

- *: Transition from state 1 to state 2.
- ? : Possible transition from state 1 to state 2.

MRC BIOSTATISTICS UNIT UNIVERSITY OF CAMBRIDGE

Pattern A

$$L_A = \int_0^{A_{20} - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} f(A_N - A_{1N} - z; q_{23}) \pi_{23} dz$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 39 / 35

Likelihood contributions (Pattern B)

Pattern B

MRC Biostatistics Unit UNIVERSITY OF CAMBRIDGE

$$L_B = \int_0^{A_{20} - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} \left[1 - F(A_N - A_{1N} - z; q_{23}) \right] dz$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 40 / 35

Likelihood contributions (Pattern C)

Pattern C

MRC Biostatistics Unit

UNIVERSITY OF CAMBRIDGE

$$L_C = \int_0^{A_N - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} f(A_N - A_{1N} - z; q_{23}) \pi_{23} dz + f(A_N - A_0; q_{12} + q_{23}) \pi_{13}$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 41 / 35

Likelihood contributions (Pattern D)

Pattern D

MRC Biostatistics Unit UNIVERSITY OF CAMBRIDGE

$$L_D = \int_0^{A_N - A_{1N}} f(A_{1N} - A_0 + z; q_{12} + q_{13}) \pi_{12} [1 - F(A_N - A_{1N} - z; q_{23})] dz + [1 - F(A_N - A_0; q_{12} + q_{23})]$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 42 / 35

EXAMPRIDGE WINVERSITY OF CAMBRIDGE Pattern E

← z -

Birth
$$A_0$$
 A^* A_b A_N

$$L_E = \int_0^{A_b - A_0} f(z; q_{12} + q_{13}) \pi_{12} f(A_N - A_0 - z; q_{23}) \pi_{23} dz$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 43 / 35

Elikelihood contributions (Pattern F) Pattern F

$$L_F = \int_0^{A_b - A_0} f(z; q_{12} + q_{13}) \pi_{12} \left[1 - F(A_N - A_0 - z; q_{23}) \right] dz$$

where

$$f(t;\lambda) = \begin{cases} \lambda \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases} , \quad F(t;\lambda) = \begin{cases} 1 - \exp(-\lambda t) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{q_{12}}{q_{12}+q_{13}} & \frac{q_{13}}{q_{12}+q_{13}} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Venediktos Kapetanakis

Two three-state Markov models for interval-censored data - slide 44 / 35

Interval regression (1)

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Extra Material

- Markov models
- Data patterns
- Likelihood

contributions

- Interval regression (1)
- Interval regression (2)

• References

- Interval regression fits models for data where each observation represents:
 - interval-censored data
 - left-censored data
 - right-censored data
 - point data
- In this type of regression, if the value for the *i*-th individual is known to lie within an interval $[y_{L_i}, y_{R_i}]$, then the likelihood contribution from this individual is simply $P(y_{L_i} \leq Y_i \leq y_{R_i})$.
- Similarly, for left-censored and right-censored data, the likelihood contribution consists of terms of the form $P(Y_i \leq y_{L_i})$ and $P(Y_i \geq y_{R_i})$, respectively.

Interval regression (2)

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

Extra Material

- Markov models
- Data patterns
- Likelihood

contributions

- Interval regression (1)
- Interval regression (2)
- References

• Let $\mathbf{y} = \mathbf{X}\beta + \epsilon$ be the model.

• We assume that $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

• The log-likelihood is:

log

$$L = -\frac{1}{2} \sum_{i \in C} \left\{ \left(\frac{y_i - x\beta}{\sigma} \right)^2 + \log \pi \sigma^2 \right\} \\ + \sum_{i \in L} \log \Phi \left(\frac{y_{L_i} - x\beta}{\sigma} \right) \\ + \sum_{i \in R} \log \left\{ 1 - \Phi \left(\frac{y_{R_i} - x\beta}{\sigma} \right) \right\} \\ + \sum_{i \in I} \log \left\{ \Phi \left(\frac{y_{R_i} - x\beta}{\sigma} \right) - \Phi \left(\frac{y_{L_i} - x\beta}{\sigma} \right) \right\}$$

References

Background Information

Statistical Methods

Method A

Method B

Results

Discussion

& Future work

Acknowledgements

- Extra Material
- Markov models
- Data patterns
- Likelihood

contributions

- Interval regression (1)
- Interval regression (2)
- References

- [1] Michael G. Kenward ; James Carpenter. Multiple imputation: current perspectives. *Statistical Methods in Medical Research*, 16:199–218, 2007.
- [2] D. Commenges. Multi-state models in epidemiology. *Lifetime Data Analysis*, 5:315–327, 1999.
- [3] William H. Greene. *Econometric Analysis*. Pearson Education International, 2003.
- [4] C. Jackson. *Multi-state modelling with R: the msm package*.
- [5] J. D. Kalbfleisch ; J. F. Lawless. The analysis of panel data under a markov assumption. *Journal of the American Statistical Association*, 80:863–871, 1985.
- [6] J.R. Norris. *Markov Chains*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1997.
- [7] J. P. Reiter ; T. E. Raghunathan. The multiple adaptations of multiple imputation. *Journal of the American Statistical Association*, 102:1462–1471, 2007.
- [8] Donald R. Rubin. *Multiple imputation for nonresponse in surveys*. John Wiley & Sons, Ltd., 1987.
- [9] Stata Corporation. STATA Manual, STATA/SE 10 edition, 2007.